Article

NMDA receptor-mediated Ca2+ influx triggers nucleocytoplasmic translocation of diacylglycerol kinase ζ under oxygen–glucose deprivation conditions, an in vitro model of ischemia, in rat hippocampal slices

Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata, Japan.
Histochemie (Impact Factor: 2.93). 01/2012; 137(4):499-511. DOI: 10.1007/s00418-011-0907-y
Source: PubMed

ABSTRACT Diacylglycerol kinase (DGK) plays a key role in pathophysiological cellular responses by regulating the levels of a lipid messenger diacylglycerol. Of DGK isozymes, DGKζ localizes to the nucleus in various cells such as neurons. We previously reported that DGKζ translocates from the nucleus to the cytoplasm in hippocampal CA1 pyramidal neurons after 20 min of transient forebrain ischemia. In this study, we examined the underlying mechanism of DGKζ translocation using hippocampal slices exposed to oxygen-glucose deprivation (OGD) to simulate an ischemic model of the brain. DGKζ-immunoreactivity gradually changed from the nucleus to the cytoplasm in CA1 pyramidal neurons after 20 min of OGD and was never detected in the nucleus after reoxygenation. Intriguingly, DGKζ was detected in the nucleus at 10 min OGD whereas the following 60 min reoxygenation induced complete cytoplasmic translocation of DGKζ. Morphometric analysis revealed that DGKζ cytoplasmic translocation correlated with nuclear shrinkage indicative of an early process of neuronal degeneration. The translocation under OGD conditions was blocked by NMDA receptor (NMDAR) inhibitor, and was induced by activation of NMDAR. Chelation of the extracellular Ca(2+) blocked the translocation under OGD conditions. These results show that DGKζ cytoplasmic translocation is triggered by activation of NMDAR with subsequent extracellular Ca(2+) influx. Furthermore, inhibition of PKC activity under OGD conditions led to nuclear retention of DGKζ in about one-third of the neurons, suggesting that PKC activity partially regulates DGKζ cytoplasmic translocation. These findings provide clues to guide further investigation of glutamate excitotoxicity mechanisms in hippocampal neurons.

0 Followers
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diacylglycerol kinase (DGK) catalyzes conversion of a lipid second messenger diacylglycerol to another messenger molecule phosphatidic acid. Consequently, DGK plays a pivotal role in cellular pathophysiology by regulating the levels of these two messengers. We reported previously that DGKζ translocates from the nucleus to cytoplasm in hippocampal neurons under ischemic/hypoxic stress. In addition, we also identified nucleosome assembly protein 1 (NAP1)-like proteins NAP1L1 and NAP1L4 as novel DGKζ-interacting partners using a proteomic approach and revealed that these NAP1-like proteins induce cytoplasmic translocation of DGKζ in overexpressed cells because NAP1-like proteins associate with the nuclear localization signal of DGKζ and block its nuclear import via importin α. In the present study, we examined whether NAP1-like proteins are expressed in the brain and whether the molecular interaction of DGKζ and NAP1-like proteins would be changed in the brain after hypoxic stress. Immunohistochemistry revealed that NAP1L1 and NAP1L4 are widely expressed in neurons and glial cells in the brain with some differences. After 3 days of transient whole-body hypoxic stress, DGKζ translocated from the nucleus to cytoplasm in hippocampal pyramidal neurons, whereas NAP1-like proteins remained in the cytoplasm. Contrary to our expectations, NAP1-like proteins showed no change in their expression levels. The molecular interaction between DGKζ and NAP1-like proteins was attenuated after hypoxic stress. These results suggest that DGKζ cytoplasmic translocation in neurons under hypoxic stress is regulated by some mechanism which differs from that mediated by NAP1-like proteins.
    Histochemie 06/2014; 142(5). DOI:10.1007/s00418-014-1226-x · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic cells have evolved to possess a distinct subcellular compartment, the nucleus, separated from the cytoplasm in a manner that allows the precise operation of the chromatin, thereby permitting controlled access to the regulatory elements in the DNA for transcription and replication. In the cytoplasm, genetic information contained in the DNA sequence is translated into proteins, including enzymes that catalyze various reactions, such as metabolic processes, energy control, and responses to changing environments. One mechanism that regulates these events involves phosphoinositide turnover signaling, which generates a lipid second messenger, diacylglycerol (DG). Since DG acts as a potent activator of several signaling molecules, it should be tightly regulated to keep cellular responsiveness within a physiological range. DG kinase (DGK) metabolizes DG by phosphorylating it to generate phosphatidic acid, thus serving as a critical regulator of DG signaling. Phosphoinositide turnover is employed differentially in the nucleus and the cytoplasm. A member of the DGK family, DGKζ, localizes to the nucleus in various cell types and is considered to regulate nuclear DG signaling. Recent studies have provided evidence that DGKζ shuttles between the nucleus and the cytoplasm in neurons under pathophysiological conditions. Transport of a signal regulator between the nucleus and the cytoplasm should be a critical function for maintaining basic processes in the nucleus, such as cell cycle regulation and gene expression, and to ensure communication between nuclear processes and cytoplasmic functions. In this review, a series of studies on nucleocytoplasmic translocation of DGKζ have been summarized, and the functional implications of this phenomenon in postmitotic neurons and cancer cells under stress conditions are discussed.
    09/2013; 54. DOI:10.1016/j.jbior.2013.08.007
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study aims to investigate the effect of noscapine (0.5-2.5μM), an alkaloid from the opium poppy, on primary murine fetal cortical neurons exposed to oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Cells were transferred to glucose-free DMEM and were exposed to hypoxia in a small anaerobic chamber. Cell viability and nitric oxide production were evaluated by MTT assay and the Griess method, respectively. The neurotoxicities produced by all three hypoxia durations tested were significantly inhibited by 0.5μM noscapine. Increasing noscapine concentration up to 2.5μM produced a concentration-dependent inhibition of neurotoxicity. Pretreatment of cells with MK-801 (10μM), a non-competitive NMDA antagonist, and nimodipine (10nM), an L-type Ca(2+) channel blockers, increased cell viability after 30min OGD, while the application of NBQX (30μM), a selective AMPA-kainate receptor antagonist partially attenuated cell injury. Subsequently, cells treated with noscapine in the presence of thapsigargin (1μM), an inhibitor of endoplasmic reticulum Ca(2+) ATPases. After 60min OGD, noscapine could inhibit the cell damage induced by thapsigargin. However, noscapine could not reduce cell damage induced by 240min OGD in the presence of thapsigargin. Noscapine attenuated nitric oxide (NO) production in cortical neurons after 30min OGD. We concluded that noscapine had a neuroprotective effect, which could be due to its interference with multiple targets in the excitotoxicity process. These effects could be mediated partially by a decrease in NO production and the modulation of intracellular calcium levels. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
    Pharmacological reports: PR 10/2014; 67(2). DOI:10.1016/j.pharep.2014.10.011 · 2.17 Impact Factor