Article

Effect of alternating and direct current in an electrocoagulation process on the removal of cadmium from water.

Central Electrochemical Research Institute, Karaikudi, India.
Water Science & Technology (Impact Factor: 1.1). 01/2012; 65(2):353-60. DOI: 10.2166/wst.2012.859
Source: PubMed

ABSTRACT The main objective of this study was to investigate the effects of AC and DC on the removal of cadmium from water using iron as anode and cathode. The various operating parameters on the removal efficiency of cadmium were investigated. The results showed that the optimum removal efficiency of 98.1 and 97.3% with the energy consumption of 0.734 and 1.413 kWh/kL was achieved at a current density of 0.2 A/dm(2), at pH of 7.0 using AC and DC respectively. The adsorption process follows second order kinetics and the temperature studies showed that adsorption was endothermic and spontaneous in nature.

0 Bookmarks
 · 
138 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A batch adsorption process was applied to investigate the removal of manganese from aqueous solution by oxidized multiwalled carbon nanotubes (MWCNTs). In doing so, the thermodynamic, adsorption isotherm, and kinetic studies were also carried out. MWCNT with 5-10-nm outer diameter, surface area of 40-600 m(2)/g, and purity above 95 % was used as an adsorbent. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. Manganese-adsorbed MWCNT was characterized by Raman, FTIR, X-ray diffraction, XPS, SEM, and TEM. The adsorption efficiency could reach 96.82 %, suggesting that MWCNT is an excellent adsorbent for manganese removal from water. The results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of manganese. Equilibrium data were well described by the typical Langmuir adsorption isotherm. Thermodynamic studies revealed that the adsorption reaction was spontaneous and endothermic process. The experimental results showed that MWCNT is an excellent manganese adsorbent. The MWCNTs removed the manganese present in the water and reduced it to a permissible level making it drinkable.
    Environmental Science and Pollution Research 05/2012; · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study provides an optimization of electrocoagulation process for the recovery of hydrogen and removal of nitrate from water. In doing so, the thermodynamic, adsorption isotherm, and kinetic studies were also carried out. Aluminum alloy of size 2 dm(2) was used as anode and as cathode. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and effect of current density were studied. The results show that a significant amount of hydrogen can be generated by this process during the removal of nitrate from water. The energy yield calculated from the hydrogen generated is 3.3778 kWh/m(3). The results also showed that the maximum removal efficiency of 95.9 % was achieved at a current density of 0.25 A/dm(2), at a pH of 7.0. The adsorption process followed second-order kinetics model. The adsorption of NO (3) (-) preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. Thermodynamic studies showed that adsorption was exothermic and spontaneous in nature. The energy yield of generated hydrogen was ~54 % of the electrical energy demand of the electrocoagulation process. With the reduction of the net energy demand, electrocoagulation may become a useful technology to treat water associated with power production. The aluminum hydroxide generated in the cell removes the nitrate present in the water and reduced it to a permissible level making the water drinkable.
    Environmental Science and Pollution Research 06/2012; · 2.62 Impact Factor

Full-text

View
20 Downloads
Available from
May 20, 2014