Progression of motor symptoms in Parkinson's disease

Department of Physical Therapy, School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, USA.
Neuroscience Bulletin (Impact Factor: 2.51). 02/2012; 28(1):39-48. DOI: 10.1007/s12264-012-1050-z
Source: PubMed


Parkinson's disease (PD) is a chronic progressive neurodegenerative disease that is clinically manifested by a triad of cardinal motor symptoms - rigidity, bradykinesia and tremor - due to loss of dopaminergic neurons. The motor symptoms of PD become progressively worse as the disease advances. PD is also a heterogeneous disease since rigidity and bradykinesia are the major complaints in some patients whereas tremor is predominant in others. In recent years, many studies have investigated the progression of the hallmark symptoms over time, and the cardinal motor symptoms have different rates of progression, with the disease usually progressing faster in patients with rigidity and bradykinesia than in those with predominant tremor. The current treatment regime of dopamine-replacement therapy improves motor symptoms and alleviates disability. Increasing the dosage of dopaminergic medication is commonly used to combat the worsening symptoms. However, the drug-induced involuntary body movements and motor complications can significantly contribute to overall disability. Further, none of the currently-available therapies can slow or halt the disease progression. Significant research efforts have been directed towards developing neuroprotective or disease-modifying agents that are intended to slow the progression. In this article, the most recent clinical studies investigating disease progression and current progress on the development of disease-modifying drug trials are reviewed.

Download full-text


Available from: Ruiping Xia, Oct 10, 2014
  • Source
    • "Parkinson’s disease (PD) is a neurodegenerative disorder associated with loss of 50 to 70% of dopaminergic neurons in the SN pars compacta (SNpc), which has been extensively investigated in regard to its behavioral and molecular aspects, both in animal models and humans [16,17]. The loss of dopamine in the projection area of the SNpc neurons leads to a functional change in the complex circuitry of the basal ganglia [18], which results in an excessive inhibition of motor systems [19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration, neuroprotection and neuronal plasticity. The CB1 cannabinoid receptors are abundantly expressed in the basal ganglia, the circuitry that is mostly affected in Parkinson's Disease (PD). Some studies show variation of CB1 expression in basal ganglia in different animal models of PD, however the results are quite controversial, due to the differences in the procedures employed to induce the parkinsonism and the periods analyzed after the lesion. The present study evaluated the CB1 expression in four basal ganglia structures, namely striatum, external globus pallidus (EGP), internal globus pallidus (IGP) and substantia nigra pars reticulata (SNpr) of rats 1, 5, 10, 20, and 60 days after unilateral intrastriatal 6-hydroxydopamine injections, that causes retrograde dopaminergic degeneration. We also investigated tyrosine hydroxylase (TH), parvalbumin, calbindin and glutamic acid decarboxylase (GAD) expression to verify the status of dopaminergic and GABAergic systems. We observed a structure-specific modulation of CB1 expression at different periods after lesions. In general, there were no changes in the striatum, decreased CB1 in IGP and SNpr and increased CB1 in EGP, but this increase was not sustained over time. No changes in GAD and parvalbumin expression were observed in basal ganglia, whereas TH levels were decreased and the calbindin increased in striatum in short periods after lesion. We believe that the structure-specific variation of CB1 in basal ganglia in the 6-hydroxydopamine PD model could be related to a compensatory process involving the GABAergic transmission, which is impaired due to the lack of dopamine. Our data, therefore, suggest that the changes of CB1 and calbindin expression may represent a plasticity process in this PD model.
    PLoS ONE 10/2013; 8(10):e76874. DOI:10.1371/journal.pone.0076874 · 3.23 Impact Factor
  • Source
    • "The pathological hallmarks of Parkinson’s disease include the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and corresponding decrease in the amount of dopamine production in the striatum (STR), which plays a pivotal role in normal motor function [7]. Major symptoms of Parkinson’s disease thus include tremors in hands, arms, feet, and face, slowness of movement (bradykinesia or akinesia), and difficulties in balance and coordination (rigidity) [8], [9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4)-deficient Spr (-/-) mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr (-/-) mice. We found that Spr (-/-) mice display variable 'open-field' behaviors, impaired motor functions on the 'rotating rod', and dystonic 'hind-limb clasping'. In this study, we report that these aberrant motor deficits displayed by Spr (-/-) mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr (-/-) mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA) and its metabolites in Spr (-/-) mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr (-/-) mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.
    PLoS ONE 04/2013; 8(4):e60803. DOI:10.1371/journal.pone.0060803 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson Disease (PD) and Huntington Disease (HD) are degenerative neurological diseases, which can result in impairments and activity limitations affecting the upper extremities from early in the disease process. The progressive nature of these diseases poses unique challenges for therapists aiming to effectively maximize physical functioning and minimize participation restrictions in these patient groups. Research is underway in both diseases to develop effective disease-modifying agents and pharmacological interventions, as well as mobility-focused rehabilitation protocols. Rehabilitation, and in particular task-specific interventions, has the potential to influence the upper extremity functional abilities of patients with these degenerative conditions. However to date, investigations of interventions specifically addressing upper extremity function have been limited in both PD, and in particular HD. In this paper, we provide an update of the known pathological features of PD and HD as they relate to upper extremity function. We further review the available literature on the use of outcome measures, and the clinical management of upper extremity function in both conditions. Due to the currently limited evidence base in both diseases, we recommend utilization of a clinical management framework specific for degenerative conditions that can serve as a guideline for disease management.
    Journal of Hand Therapy 12/2012; 26(2). DOI:10.1016/j.jht.2012.11.001 · 2.00 Impact Factor
Show more