Article

Kruppel-like factor 5 (KLF5) is critical for conferring uterine receptivity to implantation.

Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2012; 109(4):1145-50. DOI: 10.1073/pnas.1118411109
Source: PubMed

ABSTRACT A blastocyst will implant only when the uterus becomes receptive. Following attachment, luminal epithelial cells undergo degeneration at the site of the blastocyst. Although many genes critical for uterine receptivity are primarily regulated by ovarian hormones, Kruppel-like factor 5 (KLF5), a zinc finger-containing transcription factor, is persistently expressed in epithelial cells independently of ovarian hormones. Loss of uterine Klf5 causes female infertility due to defective implantation. Cox2 is normally expressed in the luminal epithelium and stroma at the site of blastocyst attachment, but luminal epithelial COX2 expression is absent with loss of Klf5. This is associated with the retention of the epithelium around the implantation chamber with arrested embryonic growth. These results suggest that Klf5 is indispensable for normal implantation.

0 Bookmarks
 · 
136 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: All mammalian uteri contain glands in the endometrium that synthesize or transport and secrete substances essential for survival and development of the conceptus (embryo/fetus and associated extraembryonic membranes). This review summarizes information related to the biological roles of uterine glands and their secretions in uterine receptivity, blastocyst/conceptus survival and implantation, and stromal cell decidualization. Studies with the ovine uterine gland knockout (UGKO) model support a primary role for uterine glands and, by inference, their secretions present in uterine luminal fluid histrotroph for conceptus survival and development. In rodents, studies with mutant and progesterone-induced UGKO mice found that uterine glands and their secretions are unequivocally required for establishment of uterine receptivity and blastocyst implantation and also may influence blastocyst trophectoderm activation and stromal cell decidualization in the uterus. Similarly in humans, histotroph from uterine glands appears critical for blastocyst implantation, uterine receptivity, and conceptus nutrition during the first trimester and uterine glands likely have a role in stromal cell decidualization. An increased understanding of uterine gland biology is important for diagnosis, prevention and treatment of fertility problems, particularly infertility and recurrent pregnancy loss, in domestic animals and humans.
    The International Journal of Developmental Biology 01/2014; 58(2-3-4):107-116. DOI:10.1387/ijdb.130344ts · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Decidualization denotes the transformation of endometrial stromal fibroblasts into specialized secretory decidual cells that provide a nutritive and immunoprivileged matrix essential for embryo implantation and placental development. In contrast to most mammals, decidualization of the human endometrium does not require embryo implantation. Instead, this process is driven by the postovulatory rise in progesterone levels and increasing local cyclic AMP production. In response to falling progesterone levels, spontaneous decidualization causes menstrual shedding and cyclic regeneration of the endometrium. A growing body of evidence indicates that the shift from embryonic to maternal control of the decidual process represents a pivotal evolutionary adaptation to the challenge posed by invasive and chromosomally diverse human embryos. This concept is predicated on the ability of decidualizing stromal cells to respond to individual embryos in a manner that either promotes implantation and further development or facilitates early rejection. Furthermore, menstruation and cyclic regeneration involves stem cell recruitment and renders the endometrium intrinsically capable of adapting its decidual response to maximize reproductive success. Here we review the endocrine, paracrine, and autocrine cues that tightly govern this differentiation process. In response to activation of various signaling pathways and genome-wide chromatin remodeling, evolutionarily conserved transcriptional factors gain access to the decidua-specific regulatory circuitry. Once initiated, the decidual process is poised to transit through distinct phenotypic phases that underpin endometrial receptivity, embryo selection, and - ultimately - resolution of pregnancy. We discuss how disorders that subvert the programming, initiation, or progression of decidualization compromise reproductive health and predispose for pregnancy failure.
    Endocrine Reviews 08/2014; DOI:10.1210/er.2014-1045 · 19.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Embryo homing and implantation occur within a crypt (implantation chamber) at the antimesometrial (AM) pole along the uterus. The mechanism by which this is achieved is not known. Here, we show that villi-like epithelial projections from the main uterine lumen toward the AM pole at regularly spaced intervals that form crypts for embryo implantation were disrupted in mice with uterine loss or gain of function of Wnt5a, or loss of function of both Ror1 and Ror2. This disruption of Wnt5a-ROR signaling resulted in disorderly epithelial projections, crypt formation, embryo spacing, and impaired implantation. These early disturbances under abnormal Wnt5a-ROR signaling were reflected in adverse late pregnancy events, including defective decidualization and placentation, ultimately leading to compromised pregnancy outcomes. This study presents deeper insight regarding the formation of organized epithelial projections for crypt formation and embryo implantation for pregnancy success.

Full-text (2 Sources)

Download
33 Downloads
Available from
May 20, 2014