Article

Kruppel-like factor 5 (KLF5) is critical for conferring uterine receptivity to implantation.

Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2012; 109(4):1145-50. DOI: 10.1073/pnas.1118411109
Source: PubMed

ABSTRACT A blastocyst will implant only when the uterus becomes receptive. Following attachment, luminal epithelial cells undergo degeneration at the site of the blastocyst. Although many genes critical for uterine receptivity are primarily regulated by ovarian hormones, Kruppel-like factor 5 (KLF5), a zinc finger-containing transcription factor, is persistently expressed in epithelial cells independently of ovarian hormones. Loss of uterine Klf5 causes female infertility due to defective implantation. Cox2 is normally expressed in the luminal epithelium and stroma at the site of blastocyst attachment, but luminal epithelial COX2 expression is absent with loss of Klf5. This is associated with the retention of the epithelium around the implantation chamber with arrested embryonic growth. These results suggest that Klf5 is indispensable for normal implantation.

Download full-text

Full-text

Available from: Huirong Xie, Feb 19, 2014
0 Followers
 · 
142 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is expressed in many organs, including female reproductive organs, and is a stem cell marker in the stomach and intestinal epithelium, hair follicles, and ovarian surface epithelium. Despite ongoing studies, the definitive physiological functions of Lgr5 remain unclear. We utilized mice with conditional deletion of Lgr5 (Lgr5(d/d)) in the female reproductive organs by progesterone receptor-Cre (Pgr(Cre)) to determine Lgr5's functions during pregnancy. Only 30% of plugged Lgr5(d/d) females delivered live pups, and their litter sizes were lower. We found that pregnancy failure in Lgr5(d/d) females was due to insufficient ovarian progesterone (P4) secretion that compromised decidualization, terminating pregnancy. The drop in P4 levels was reflected in elevated levels of P4-metabolizing enzyme 20α-hydroxysteroid dehydrogenase in corpora lutea (CL) inactivated of Lgr5. Of interest, P4 supplementation rescued decidualization failure and supported pregnancy to full term in Lgr5(d/d) females. These results provide strong evidence that Lgr5 is critical to normal CL function, unveiling a new role of LGR5 in the ovary.-Sun, X., Terakawa, J., Clevers, H., Barker, N., Daikoku, T., Dey, S. K. Ovarian LGR5 is critical for successful pregnancy.
    The FASEB Journal 01/2014; DOI:10.1096/fj.13-248344 · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During implantation, uterine luminal epithelial (LE) cells first interact with the blastocyst trophectoderm. Within 30 hr after the initiation of attachment, LE cells surrounding the blastocyst in the implantation chamber (crypt) disappear, allowing trophoblast cells to make direct physical contact with the underneath stroma for successful implantation. The mechanism for the extraction of LE cells was thought to be mediated by apoptosis. Here, we show that LE cells in direct contact with the blastocyst are endocytosed by trophoblast cells by adopting the nonapoptotic cell-in-cell invasion process (entosis) in the absence of caspase 3 activation. Our in vivo observations were reinforced by the results of co-culture experiments with primary uterine epithelial cells with trophoblast stem cells or blastocysts showing internalization of epithelial cells by trophoblasts. We have identified entosis as a mechanism to remove LE cells by trophoblast cells in implantation, conferring a role for entosis in an important physiological process. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 04/2015; DOI:10.1016/j.celrep.2015.03.035 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Uterine receptivity is defined as a limited period when the uterine environment is conducive to blastocyst acceptance and implantation. Any disturbance of this early pregnancy event will compromise pregnancy success. In this review, we first briefly summarize uterine morphological coordination for the attainment of receptivity, then focus on elucidating the molecular complexity in establishing uterine receptivity and hence embryo implantation. A better understanding of the molecular basis governing uterine receptivity will help to improve the outcome of natural pregnancy and pregnancy conceived via assisted reproductive techniques.
    The International Journal of Developmental Biology 01/2014; 58(2-3-4):147-154. DOI:10.1387/ijdb.130345wh · 2.57 Impact Factor

Similar Publications