Diabetes augments and inhaled nitric oxide prevents the adverse hemodynamic effects of transfusing syngeneic stored blood in mice.

Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
Transfusion (Impact Factor: 3.53). 01/2012; 52(7):1410-22. DOI: 10.1111/j.1537-2995.2011.03473.x
Source: PubMed

ABSTRACT Stored red blood cells (RBCs) undergo progressive deleterious functional, biochemical, and structural changes. The mechanisms responsible for the adverse effects of transfusing stored RBCs remain incompletely elucidated.
Awake wild-type (WT) mice, WT mice fed a high-fat diet (HFD-fed WT) for 4 to 6 weeks, and diabetic (db/db) mice were transfused with syngeneic leukoreduced RBCs or supernatant with or without oxidation (10% of total blood volume) after storage for not more than 24 hours (FRBCs) or 2 weeks (SRBCs). Inhaled nitric oxide (NO) at 80 parts per million was administered to a group of mice transfused with SRBCs. Blood and tissue samples were collected 2 hours after transfusion to measure iron and cytokine levels.
SRBCs had altered RBC morphology and a reduced P(50) . Transfusion of SRBCs into WT or HFD-fed WT mice did not produce systemic hemodynamic changes. In contrast, transfusion of SRBCs or supernatant from SRBCs into db/db mice induced systemic hypertension that was prevented by concurrent inhalation of NO. Infusion of washed SRBCs or oxidized SRBC supernatant into db/db mice did not induce hypertension. Two hours after SRBC transfusion, plasma hemoglobin (Hb), interleukin-6, and serum iron levels were increased.
Transfusion of syngeneic SRBCs or the supernatant from SRBCs produces systemic hypertension and vasoconstriction in db/db mice. It is likely that RBC storage, by causing in vitro hemolysis and posttransfusion hemoglobinemia, produces sustained NO scavenging and vasoconstriction in mice with endothelial dysfunction. Vasoconstriction is prevented by oxidizing the supernatant of SRBCs or breathing NO during SRBC transfusion.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Saline-adenine-glucose-mannitol (SAGM) and a variant solution, AS-1, have been used for more than 30 years to preserve red blood cells (RBCs). Reputedly these RBC components have similar quality, although no paired study has been reported. To determine whether differences exist, a paired study of SAGM RBCs and AS-1 RBCs was conducted to identify membrane changes, including microparticle (MP) quantitation and in vitro RBC-endothelial cell (EC) interaction. Two whole blood packs were pooled and split and RBCs were prepared (n = 6 pairs). One pack was suspended in SAGM and one in AS-1. Samples were collected during 42 days of refrigerated storage. RBC shape and size and glycophorin A (GPA)(+) and phosphatidylserine (PS)(+) MPs were measured by flow cytometry. RBC adhesion to ECs was determined by an in vitro flow perfusion assay. Routine variables (pH, hemolysis) were also measured. Compared to SAGM RBCs, AS-1 RBCs had lower hemolysis (p < 0.04), lower GPA(+) MPs (p < 0.03), and lower PS(+) MPs (p < 0.03) from Day 14 onward. AS-1 RBCs had higher (p < 0.02) side scatter from Day 28 onward compared to SAGM RBCs. SAGM RBCs were more adherent to ECs on Day 28 of storage compared to AS-1 RBCs (p = 0.04), but reversed on Day 42 (p = 0.02). SAGM RBCs lose more membrane during storage. SAGM RBCs had increased adherence to ECs on Day 28 of storage, while AS-1 RBCs were more adherent on Day 42. The effect of these differences on the function and survival of SAGM RBCs and AS-1 RBCs after transfusion remains to be determined.
    Transfusion 07/2013; · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Clinical outcomes in transfused patients may be affected by the duration of blood storage, possibly due to red blood cell (RBC)-mediated disruption of nitric oxide (NO) signaling, a key regulator of vascular tone and blood flow. STUDY DESIGN AND METHODS: AS-1 RBC units stored up to 42 days were sampled at selected storage times. Samples were added to aortic rings ex vivo, a system where NO-mediated vasodilation could be experimentally controlled. RESULTS: RBC units showed storage-dependent changes in plasma hemoglobin (Hb), RBC 2,3-diphosphoglycerate acid, and RBC adenosine triphosphate conforming to expected profiles. When freshly collected (Day 0) blood was added to rat aortic rings, methacholine (MCh) stimulated substantial NO-mediated vasodilation. In contrast, MCh produced no vasodilation in the presence of blood stored for 42 days. Surprisingly, the vasoinhibitory effects of stored RBCs were almost totally mediated by RBCs themselves: removal of the supernatant did not attenuate the inhibitory effects, while addition of supernatant alone to the aortic rings only minimally inhibited MCh-stimulated relaxation. Stored RBCs did not inhibit vasodilation by a direct NO donor, demonstrating that the RBC-mediated vasoinhibitory mechanism did not work by NO scavenging. CONCLUSIONS: These studies have revealed a previously unrecognized vasoinhibitory activity of stored RBCs, which is more potent than the described effects of free Hb and works through a different mechanism that does not involve NO scavenging but may function by reducing endothelial NO production. Through this novel mechanism, transfusion of small volumes of stored blood may be able to disrupt physiologic vasodilatory responses and thereby possibly cause adverse clinical outcomes.
    Transfusion 03/2013; · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rate that hemoglobin reacts with nitric oxide (NO) is limited by how fast NO can diffuse into the heme pocket. The reaction is as fast as any ligand/protein reaction can be and the result, when hemoglobin is in its oxygenated form, is formation of nitrate in what is known as the dioxygenation reaction. As nitrate, at the concentrations made through the dioxygenation reaction, is biologically inert, the only role hemoglobin was once thought to play in NO signaling was to inhibit it. However, there are now several mechanisms that have been discovered by which hemoglobin may preserve, control, and even create NO activity. These mechanisms involve compartmentalization of reacting species and conversion of NO from or into other species such as nitrosothiols or nitrite which could transport NO activity. Despite the tremendous amount of work devoted to this field, major questions concerning precise mechanisms of NO activity preservation as well as if and how Hb creates NO activity remain unanswered.
    Free Radical Biology & Medicine 04/2013; · 5.27 Impact Factor