Diabetes augments and inhaled nitric oxide prevents the adverse hemodynamic effects of transfusing syngeneic stored blood in mice

Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
Transfusion (Impact Factor: 3.23). 01/2012; 52(7):1410-22. DOI: 10.1111/j.1537-2995.2011.03473.x
Source: PubMed


Stored red blood cells (RBCs) undergo progressive deleterious functional, biochemical, and structural changes. The mechanisms responsible for the adverse effects of transfusing stored RBCs remain incompletely elucidated.
Awake wild-type (WT) mice, WT mice fed a high-fat diet (HFD-fed WT) for 4 to 6 weeks, and diabetic (db/db) mice were transfused with syngeneic leukoreduced RBCs or supernatant with or without oxidation (10% of total blood volume) after storage for not more than 24 hours (FRBCs) or 2 weeks (SRBCs). Inhaled nitric oxide (NO) at 80 parts per million was administered to a group of mice transfused with SRBCs. Blood and tissue samples were collected 2 hours after transfusion to measure iron and cytokine levels.
SRBCs had altered RBC morphology and a reduced P(50) . Transfusion of SRBCs into WT or HFD-fed WT mice did not produce systemic hemodynamic changes. In contrast, transfusion of SRBCs or supernatant from SRBCs into db/db mice induced systemic hypertension that was prevented by concurrent inhalation of NO. Infusion of washed SRBCs or oxidized SRBC supernatant into db/db mice did not induce hypertension. Two hours after SRBC transfusion, plasma hemoglobin (Hb), interleukin-6, and serum iron levels were increased.
Transfusion of syngeneic SRBCs or the supernatant from SRBCs produces systemic hypertension and vasoconstriction in db/db mice. It is likely that RBC storage, by causing in vitro hemolysis and posttransfusion hemoglobinemia, produces sustained NO scavenging and vasoconstriction in mice with endothelial dysfunction. Vasoconstriction is prevented by oxidizing the supernatant of SRBCs or breathing NO during SRBC transfusion.

6 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hemopexin is an acute-phase plasma glycoprotein, produced mainly by the liver and released into plasma, where it binds heme with high affinity. Other sites of hemopexin synthesis are the nervous system, skeletal muscle, retina, and kidney. The only known receptor for the heme-hemopexin complex is the scavenger receptor, LDL receptor-related protein (LRP)1, which is expressed in most cell types, thus indicating multiple sites of heme-hemopexin complex recovery. The better-characterized function of hemopexin is heme scavenging at the systemic level, consisting of the transport of heme to the liver, where it is catabolyzed or used for the synthesis of hemoproteins or exported to bile canaliculi. This is important both in physiologic heme management for heme-iron recycling and in pathologic conditions associated with intravascular hemolysis to prevent the prooxidant and proinflammatory effects of heme. Other than scavenging heme, the heme-hemopexin complex has been shown to be able to activate signaling pathways, thus promoting cell survival, and to modulate gene expression. In this review, the importance of heme scavenging by hemopexin, as well as the other emerging functions of this protein, are discussed.
    Antioxidants & Redox Signaling 09/2009; 12(2):305-20. DOI:10.1089/ars.2009.2787 · 7.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During extended storage, erythrocytes undergo functional changes. These changes reduce the viability of erythrocytes leading to release of oxyhemoglobin, a potent scavenger of nitric oxide. We hypothesized that transfusion of ovine packed erythrocytes (PRBC) stored for prolonged periods would induce pulmonary vasoconstriction in lambs, and that reduced vascular nitric oxide concentrations would increase this vasoconstrictor effect. We developed a model of autologous stored blood transfusion in lambs (n = 36). Leukoreduced blood was stored for either 2 days (fresh PRBC) or 40 days (stored PRBC). Fresh or stored PRBC were transfused into donors instrumented for awake hemodynamic measurements. Hemodynamic effects of PRBC transfusion were also studied after infusion of N-nitro-L-arginine methyl-ester (25 mg/kg) or during inhalation of nitric oxide (80 ppm). Cell-free hemoglobin levels were higher in the supernatant of stored PRBC than in supernatant of fresh PRBC (Mean ± SD, 148 ± 20 vs. 41 ± 13 mg/dl, respectively, P < 0.001). Pulmonary artery pressure during transfusion of stored PRBC transiently increased from 13 ± 1 to 18 ± 1 mmHg (P < 0.001) and was associated with increased plasma hemoglobin concentrations. N-nitro-L-arginine methyl-ester potentiated the increase in pulmonary arterial pressure induced by transfusing stored PRBC, whereas inhalation of nitric oxide prevented the vasoconstrictor response. Our results suggest that patients with reduced vascular nitric oxide levels because of endothelial dysfunction may be more susceptible to adverse effects of transfusing blood stored for prolonged periods. These patients might benefit from transfusion of fresh PRBC, when available, or inhaled nitric oxide supplementation to prevent the pulmonary hypertension associated with transfusion of stored PRBC.
    Anesthesiology 03/2012; 116(3):637-47. DOI:10.1097/ALN.0b013e318246ef77 · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transfusion of human blood stored for more than 2 weeks is associated with increased mortality and morbidity. During storage, packed erythrocytes progressively release hemoglobin, which avidly binds nitric oxide. We hypothesized that the nitric oxide mediated hyperemic response after ischemia would be reduced after transfusion of packed erythrocytes stored for 40 days. We conducted a crossover randomized interventional study, enrolling 10 healthy adults. Nine volunteers completed the study. Each volunteer received one unit of 40-day and one of 3-day stored autologous leukoreduced packed erythrocytes, on different study days according to a randomization scheme. Blood withdrawal and reactive hyperemia index measurements were performed before and 10 min, 1 h, 2 h, and 4 h after transfusion. The reactive hyperemia index during the first 4 h after transfusion of 40-day compared with 3-day stored packed erythrocytes was unchanged. Plasma hemoglobin and bilirubin concentrations were higher after transfusion of 40-day than after 3-day stored packed erythrocytes (P = 0.02, [95% CI difference 10-114 mg/l] and 0.001, [95% CI difference 0.6-1.5 mg/dl], respectively). Plasma concentrations of potassium, lactate dehydrogenase, haptoglobin, and cytokines, as well as blood pressure, did not differ between the two transfusions and remained within the normal range. Plasma nitrite concentrations increased after transfusion of 40-day stored packed erythrocytes, but not after transfusion of 3-day stored packed erythrocytes (P = 0.01, [95% CI difference 0.446-0.66 μM]). Transfusion of autologous packed erythrocytes stored for 40 days is associated with increased hemolysis, an unchanged reactive hyperemia index, and increased concentrations of plasma nitrite.
    Anesthesiology 04/2012; 117(1):56-63. DOI:10.1097/ALN.0b013e31825575e6 · 5.88 Impact Factor
Show more