Article

Population differences in genetic risk for age-related macular degeneration and implications for genetic testing.

Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
Archives of ophthalmology (Impact Factor: 4.49). 01/2012; 130(1):116-7. DOI: 10.1001/archopthalmol.2011.1370
Source: PubMed

Full-text

Available from: Jonathan l. Haines, Apr 03, 2014
0 Followers
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Substantial progress has been made in identifying susceptibility variants for age-related macular degeneration (AMD). The majority of research to identify genetic variants associated with AMD has focused on nuclear genetic variation. While there is some evidence that mitochondrial genetic variation contributes to AMD susceptibility, to date, these studies have been limited to populations of European descent resulting in a lack of data in diverse populations. A major goal of the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study is to describe the underlying genetic architecture of common, complex diseases across diverse populations. This present study sought to determine if mitochondrial genetic variation influences risk of AMD across diverse populations. We performed a genetic association study to investigate the contribution of mitochondrial DNA variation to AMD risk. We accessed samples from the National Health and Nutrition Examination Surveys, a U.S population-based, cross-sectional survey collected without regard to health status. AMD cases and controls were selected from the Third NHANES and NHANES 2007-2008 datasets which include non-Hispanic whites, non-Hispanic blacks, and Mexican Americans. AMD cases were defined as those > 60 years of age with early/late AMD, as determined by fundus photography. Targeted genotyping was performed for 63 mitochondrial SNPs and participants were then classified into mitochondrial haplogroups. We used logistic regression assuming a dominant genetic model adjusting for age, sex, body mass index, and smoking status (ever vs. never). Regressions and meta-analyses were performed for individual SNPs and mitochondrial haplogroups J, T, and U. We identified five SNPs associated with AMD in Mexican Americans at p < 0.05, including three located in the control region (mt16111, mt16362, and mt16319), one in MT-RNR2 (mt1736), and one in MT-ND4 (mt12007). No mitochondrial variant or haplogroup was significantly associated in non-Hispanic blacks or non- Hispanic whites in the final meta-analysis. This study provides further evidence that mitochondrial variation plays a role in susceptibility to AMD and contributes to the knowledge of the genetic architecture of AMD in Mexican Americans.
    Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing 01/2015; 20:243-54.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related macular degeneration (AMD) is the main cause of blindness in the developed world. The etiology of AMD is multifactorial due to the interaction between genetic and environmental factors. IL-8 has a role in inflammation and angiogenesis; we report the genetic characterization of IL-8 allele architecture and evaluate the role of SNPs or haplotypes in the susceptibility to wet AMD, case-control study. Case-control study including 721 AMD patients and 660 controls becoming from Italian population. Genotyping was carried out by Real Time-PCR. Differences in the frequencies were estimated by the chi-square test. Direct sequencing was carried out by capillary electrophoresis trough ABI3130xl. rs2227306 showed a p-value of 4.15*10(-5) and an Odds Ratio (OR) for T allele of 1.39 [1.19-1.62]. After these positive results, we sequenced the entire IL-8 regulatory and coding regions of 60 patients and 30 controls stratified for their genotype at rs2227306. We defined two different haplotypes involving rs4073 (A/T), rs2227306 (C/T), rs2227346 (C/T) and rs1126647 (A/T): A-T-T-T (p-value: 2.08*10(-9); OR: 1.68 [1.43-1.97]) and T-C-C-A (p-value: 7.07*10(-11); OR: 0.60 [0.51-0.70]). To further investigate a potential functional role of associated haplotypes, we performed an expression study on RNA extracted from whole blood of 75 donors to verify a possible direct correlation between haplotype and gene expression, failing to reveal significant differences. These results suggest a possible secondary role of IL-8 gene in the development of the disease. This paper outlines the importance of association between inflammation and AMD. Moreover IL-8 is a new susceptibility genomic biomarker of AMD.
    PLoS ONE 07/2013; 8(6):e66978. DOI:10.1371/journal.pone.0066978 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the contribution of genetic variants of complement factor H (CFH), complement component 2 and 3 (C2 and C3), complement factor B (CFB), and age-related maculopathy susceptibility 2 (ARMS2) to age-related macular degeneration (AMD) risk in the Mexican Mestizo population. Analysis included 282 unrelated Mexican patients with advanced AMD, 205 healthy controls, and 280 population controls. Stereoscopic fundus images were graded on the Clinical Age-Related Maculopathy System (CARMS). We designed a resequencing strategy using primers with M13 adaptor for the 23 exons of the CFH gene in a subgroup of 96 individuals clinically evaluated: 48 AMD cases and 48 age- and sex-matched healthy controls. Single nucleotide polymorphisms (SNPs) in C3 (Arg80Gly and Pro292Leu), C2 (rs547154), CFB (Leu9His), and ARMS2 (Ala69Ser) were genotyped in all patients, healthy and population controls using TaqMan assay. All evaluated individuals were Mexican Mestizos, and their genetic ancestry was validated using 224 ancestry informative markers and calculating Fst values. The CFH resequencing revealed 19 SNPs and a common variant in the intron 2 splice acceptor site; three CFH haplotypes inferred from individual genotypes, showed significant differences between cases and controls. The risk alleles in C3 (rs1047286, odds ratio [OR]=2.48, 95% confidence interval [CI]=1.64-3.75, p=1.59E-05; rs2230199, OR=2.15, 95% CI=1.48-3.13, p=6.28E-05) and in ARMS2 (rs10490924, OR=3.09, 95% CI=2.48-3.86, p=5.42E-23) were strongly associated with risk of AMD. The protective effect of alleles in C2 (rs547154) and CFB (rs4151667) showed a trend but was not significantly associated after correction for multiple testing. Our results show that ARMS2 and C3 are major contributors to advanced AMD in Mexican patients, while the contributions of CFH, C2, and CFB are minor to those of other populations, reveling significant ethnic differences in minor allele frequencies. We provide evidence that two specific common haplotypes in the CFH gene predispose individuals to AMD, while another may confer reduced risk of disease in this admixed population.
    Molecular vision 01/2014; 20:105-16. · 2.25 Impact Factor