Article

Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice.

Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA.
The Journal of clinical investigation (Impact Factor: 13.77). 02/2012; 122(2):639-53. DOI: 10.1172/JCI59227
Source: PubMed

ABSTRACT Pancreatic cancer is almost invariably associated with mutations in the KRAS gene, most commonly KRASG12D, that result in a dominant-active form of the KRAS GTPase. However, how KRAS mutations promote pancreatic carcinogenesis is not fully understood, and whether oncogenic KRAS is required for the maintenance of pancreatic cancer has not been established. To address these questions, we generated two mouse models of pancreatic tumorigenesis: mice transgenic for inducible KrasG12D, which allows for inducible, pancreas-specific, and reversible expression of the oncogenic KrasG12D, with or without inactivation of one allele of the tumor suppressor gene p53. Here, we report that, early in tumorigenesis, induction of oncogenic KrasG12D reversibly altered normal epithelial differentiation following tissue damage, leading to precancerous lesions. Inactivation of KrasG12D in established precursor lesions and during progression to cancer led to regression of the lesions, indicating that KrasG12D was required for tumor cell survival. Strikingly, during all stages of carcinogenesis, KrasG12D upregulated Hedgehog signaling, inflammatory pathways, and several pathways known to mediate paracrine interactions between epithelial cells and their surrounding microenvironment, thus promoting formation and maintenance of the fibroinflammatory stroma that plays a pivotal role in pancreatic cancer. Our data establish that epithelial KrasG12D influences multiple cell types to drive pancreatic tumorigenesis and is essential for tumor maintenance. They also strongly support the notion that inhibiting KrasG12D, or its downstream effectors, could provide a new approach for the treatment of pancreatic cancer.

0 Followers
 · 
170 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer is one of the deadliest human malignancies due to its early metastatic spread and resistance to therapy. The mechanisms regulating pancreatic cancer metastasis are so far poorly understood. Here, using both in vitro and in vivo approaches, it is demonstrated that CD44, a transmembrane glycoprotein expressed on a subset of pancreatic cancer cells, is required for the induction of epithelial-mesenchymal transition (EMT) and the activation of an invasive program in pancreatic cancer. Mechanistically, the transcription factor Snail1 (SNAI1), a regulator of the EMT program, is a downstream target of CD44 in primary pancreatic cancer cells and regulates membrane bound metalloproteinase (MMP14/MT1-MMP) expression. In turn, MT1-MMP expression is required for pancreatic cancer invasion. Thus, these data establish the CD44-Snail-MMP axis as a key regulator of the EMT program and of invasion in pancreatic cancer. This study sets the stage for CD44 and MT1-MMP as therapeutic targets in pancreatic cancer, for which small molecule or biologic inhibitors are available. Visual Overview: http://mcr.aacrjournals.org/content/early/2015/01/07/1541-7786.MCR-14-0076/F1.large.jpg. Mol Cancer Res; 13(1); 1-7. ©2014 AACR. ©2014 American Association for Cancer Research.
    Molecular Cancer Research 01/2015; 13(1):9-15. DOI:10.1158/1541-7786.MCR-14-0076 · 4.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of pancreatic cancer has prompted the development of numerous mouse models that aim to recapitulate the phenotypic and mechanistic features of this deadly malignancy. This review accomplishes two tasks. First, it provides an overview of the models that have been used as representations of both the neoplastic and carcinoma phenotypes. Second, it presents new modeling schemes that ultimately will serve to more faithfully capture the temporal and spatial progression of the human disease, providing platforms for improved understanding of the role of non-epithelial compartments in disease etiology as well as evaluating therapeutic approaches.
    Frontiers in Physiology 12/2014; 5:464. DOI:10.3389/fphys.2014.00464
  • [Show abstract] [Hide abstract]
    ABSTRACT: A nearly universal feature of pancreatic ductal adenocarcinoma (PDAC) is an extensive presence of activated stroma. This stroma is thought to aid in various tumor-promoting processes and hampers response to therapy. Here, we aim to evaluate the evidence that supports this role of the stroma in PDAC with functional experiments in relevant models, discuss the clinical trials that have aimed to target the stroma in this disease, and examine recent work that explains why these clinical trials based on stroma-targeting strategies have thus far not achieved the expected success. We systematically searched PubMed through August 2014 with no restrictions to identify published peer-reviewed research articles assessing the effect of targeting the stroma on tumor growth or metastases in preclinical animal models. Five hundred and thirty articles were extracted of which 31 were included in the analysis. Unfortunately, due to the large variety in models and outcome measures, we could not perform a meta-analysis of our data. We find that despite an abundance of positive outcomes reported in previous studies on stroma targeting, a strong discrepancy exists with the outcomes of clinical trials and the more recent preclinical work that is in line with these trials. We explain the incongruities by the duration of stroma targeting and propose that chronic stroma targeting treatment is possibly detrimental in the treatment of this disease.
    Cancer and metastasis reviews 01/2015; DOI:10.1007/s10555-014-9541-1 · 6.45 Impact Factor

Full-text (2 Sources)

Download
44 Downloads
Available from
May 27, 2014