De novo assembly and genotyping of variants using colored de Bruijn graphs.

Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
Nature Genetics (Impact Factor: 29.65). 02/2012; 44(2):226-32. DOI: 10.1038/ng.1028
Source: PubMed

ABSTRACT Detecting genetic variants that are highly divergent from a reference sequence remains a major challenge in genome sequencing. We introduce de novo assembly algorithms using colored de Bruijn graphs for detecting and genotyping simple and complex genetic variants in an individual or population. We provide an efficient software implementation, Cortex, the first de novo assembler capable of assembling multiple eukaryotic genomes simultaneously. Four applications of Cortex are presented. First, we detect and validate both simple and complex structural variations in a high-coverage human genome. Second, we identify more than 3 Mb of sequence absent from the human reference genome, in pooled low-coverage population sequence data from the 1000 Genomes Project. Third, we show how population information from ten chimpanzees enables accurate variant calls without a reference sequence. Last, we estimate classical human leukocyte antigen (HLA) genotypes at HLA-B, the most variable gene in the human genome.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Repetitive sequences are abundant in the human genome. Different classes of repetitive DNA sequences, including simple repeats, tandem repeats, segmental duplications, interspersed repeats, and other elements, collectively span more than 50% of the genome. Because repeat sequences occur in the genome at different scales they can cause various types of sequence analysis errors, including in alignment, de novo assembly, and annotation, among others. This mini-review highlights the challenges introduced by small-scale repeat sequences, especially near-identical tandem or closely located repeats and short tandem repeats, for discovering DNA insertion and deletion (indel) mutations from next-generation sequencing data. We also discuss the de Bruijn graph sequence assembly paradigm that is emerging as the most popular and promising approach for detecting indels. The human exome is taken as an example and highlights how these repetitive elements can obscure or introduce errors while detecting these types of mutations.
    Frontiers in Bioengineering and Biotechnology 01/2015; 3:8. DOI:10.3389/fbioe.2015.00008
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Genome 10K Project was established in 2009 by a consortium of biologists and genome scientists determined to facilitate the sequencing and analysis of the complete genomes of 10,000 vertebrate species. Since then the number of selected and initiated species has risen from ∼26 to 277 sequenced or ongoing with funding, an approximately tenfold increase in five years. Here we summarize the advances and commitments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and future vision of the landscape of Genome 10K. The endeavor is ambitious, bold, expensive, and uncertain, but together the Genome 10K Consortium of Scientists and the worldwide genomics community are moving toward their goal of delivering to the coming generation the gift of genome empowerment for many vertebrate species.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We here present the first whole genome analysis of an anonymous Kinh Vietnamese (KHV) trio whose genomes were deeply sequenced to 30-fold average coverage. The resulting short reads covered 99.91 percent of the human reference genome (GRCh37d5). We identified 4,719,412 SNPs and 827,385 short indels that satisfied the Mendelian inheritance law. Among them, 109,914 (2.3 percent) SNPs and 59,119 (7.1 percent) short indels were novel. We also detected 30,171 structural variants of which 27,604 (91.5 percent) were large indels. There were 6,681 large indels in the range 0.1-100 kbp occurring in the child genome that were also confirmed in either the father or mother genome. We compared these large indels against the DGV database and found that 1,499 (22.44 percent) were KHV specific. De novo assembly of high-quality unmapped reads yielded 789 contigs with the length greater than or equal to 300 bp. There were 235 contigs from the child genome of which 199 (84.7 percent) were significantly matched with at least one contig from the father or mother genome. Blasting these 199 contigs against other alternative human genomes revealed 4 novel contigs. The novel variants identified from our study demonstrated the necessity of conducting more genome-wide studies not only for Kinh but also for other ethnic groups in Vietnam.


Available from