Article

Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint.

Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
Nature Genetics (Impact Factor: 29.65). 02/2012; 44(2):157-64. DOI: 10.1038/ng.1039
Source: PubMed

ABSTRACT Exogenous double-stranded RNA (dsRNA) has been shown to exert homology-dependent effects at the level of both target mRNA stability and chromatin structure. Using C. elegans undergoing RNAi as an animal model, we have investigated the generality, scope and longevity of dsRNA-targeted chromatin effects and their dependence on components of the RNAi machinery. Using high-resolution genome-wide chromatin profiling, we found that a diverse set of genes can be induced to acquire locus-specific enrichment of histone H3 lysine 9 trimethylation (H3K9me3), with modification footprints extending several kilobases from the site of dsRNA homology and with locus specificity sufficient to distinguish the targeted locus from the other 20,000 genes in the C. elegans genome. Genetic analysis of the response indicated that factors responsible for secondary siRNA production during RNAi were required for effective targeting of chromatin. Temporal analysis revealed that H3K9me3, once triggered by dsRNA, can be maintained in the absence of dsRNA for at least two generations before being lost. These results implicate dsRNA-triggered chromatin modification in C. elegans as a programmable and locus-specific response defining a metastable state that can persist through generational boundaries.

0 Bookmarks
 · 
183 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diverse classes of RNA, ranging from small to long non-coding RNAs, have emerged as key regulators of gene expression, genome stability and defence against foreign genetic elements. Small RNAs modify chromatin structure and silence transcription by guiding Argonaute-containing complexes to complementary nascent RNA scaffolds and then mediating the recruitment of histone and DNA methyltransferases. In addition, recent advances suggest that chromatin-associated long non-coding RNA scaffolds also recruit chromatin-modifying complexes independently of small RNAs. These co-transcriptional silencing mechanisms form powerful RNA surveillance systems that detect and silence inappropriate transcription events, and provide a memory of these events via self-reinforcing epigenetic loops.
    Nature Reviews Genetics 01/2015; 16(2). DOI:10.1038/nrg3863 · 39.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In various organisms, an efficient RNAi response can be triggered by feeding cells with bacteria producing double-stranded RNA (dsRNA) against an endogenous gene. However, the detailed mechanisms and natural functions of this pathway are not well understood in most cases. Here, we studied siRNA biogenesis from exogenous RNA and its genetic overlap with endogenous RNAi in the ciliate Paramecium tetraurelia by high-throughput sequencing. Using wild-type and mutant strains deficient for dsRNA feeding we found that high levels of primary siRNAs of both strands are processed from the ingested dsRNA trigger by the Dicer Dcr1, the RNA-dependent RNA polymerases Rdr1 and Rdr2 and other factors. We further show that this induces the synthesis of secondary siRNAs spreading along the entire endogenous mRNA, demonstrating the occurrence of both 3'-to-5' and 5'-to-3' transitivity for the first time in the SAR clade of eukaryotes (Stramenopiles, Alveolates, Rhizaria). Secondary siRNAs depend on Rdr2 and show a strong antisense bias; they are produced at much lower levels than primary siRNAs and hardly contribute to RNAi efficiency. We further provide evidence that the Paramecium RNAi machinery also processes single-stranded RNAs from its bacterial food, broadening the possible natural functions of exogenously induced RNAi in this organism. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015; 43(3). DOI:10.1093/nar/gku1331 · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small RNA-guided transcriptional silencing (nuclear RNAi) is fundamental to genome integrity and epigenetic inheritance. Despite recent progress in identifying the capability and genetic requirements for nuclear RNAi in Caenorhabditis elegans, the natural targets and cellular functions of nuclear RNAi remain elusive. To resolve this gap, we coordinately examined the genome-wide profiles of transcription, histone H3 lysine 9 methylation (H3K9me) and endogenous siRNAs of a germline nuclear Argonaute (hrde-1/wago-9) mutant and identified regions on which transcription activity is markedly increased and/or H3K9me level is markedly decreased relative to wild type animals. Our data revealed a distinct set of native targets of germline nuclear RNAi, with the H3K9me response exhibiting both overlapping and non-overlapping distribution with the transcriptional silencing response. Interestingly LTR retrotransposons, but not DNA transposons, are highly enriched in the targets of germline nuclear RNAi. The genomic distribution of the native targets is highly constrained, with >99% of the identified targets present in five autosomes but not in the sex chromosome. By contrast, HRDE-1-associated small RNAs correspond to all chromosomes. In addition, we found that the piRNA pathway is not required for germline nuclear RNAi activity on native targets. Germline nuclear RNAi in C. elegans is required to silence retrotransposons but not DNA transposon. Transcriptional silencing and H3K9me can occur independently of each other on the native targets of nuclear RNAi in C. elegans. Our results rule out a simple model in which nuclear Argonaute protein-associated-small RNAs are sufficient to trigger germline nuclear RNAi responses. In addition, the piRNA pathway and germline nuclear RNAi are specialized to target different types of foreign genetic elements for genome surveillance in C. elegans.
    BMC Genomics 12/2014; 15(1):1157. DOI:10.1186/1471-2164-15-1157 · 4.04 Impact Factor

Preview

Download
1 Download
Available from