Article

Anatomy driven optimization strategy for total marrow irradiation with a volumetric modulated arc therapy technique.

Radiation Oncology Dept., Humanitas Cancer Center, Milano (Rozzano), Italy.
Journal of Applied Clinical Medical Physics (Impact Factor: 0.96). 01/2012; 13(1):3653. DOI: 10.1016/j.ijrobp.2011.06.1591
Source: PubMed

ABSTRACT The purpose of this study was to evaluate the possibility of dose distribution optimization for total marrow irradiation (TMI) employing volumetric-modulated arc therapy (VMAT) with RapidArc (RA) technology setting isocenter's positions and jaw's apertures according to patient's anatomical features. Plans for five patients were generated with the RA engine (PROIII): eight arcs were distributed along four isocenters and simultaneously optimized with collimator set to 90°. Two models were investigated for geometrical settings of arcs: (1) in the "symmetric" model, isocenters were equispaced and field apertures were set the same for all arcs to uniformly cover the entire target length; (2) in the "anatomy driven" model, both field sizes and isocenter positions were optimized in order to minimize the target volume near the field edges (i.e., to maximize the freedom of motion of MLC leaves inside the field aperture (for example, avoiding arcs with ribs and iliac wings in the same BEV)). All body bones from the cranium to mid of the femurs were defined as PTV; the maximum length achieved in this study was 130 cm. Twelve (12) Gy in 2 Gy/fractions were prescribed in order to obtain the covering of 85% of the PTV by 100% of the prescribed dose. For all organs at risk (including brain, optical structures, oral and neck structures, lungs, heart, liver, kidneys, spleen, bowels, bladder, rectum, genitals), planning strategy aimed to maximize sparing according to ALARA principles, looking to reach a mean dose lower than 6 Gy (i.e., 50% of the prescribed dose). Mean MU/fraction resulted 3184 ± 354 and 2939 ± 264 for the two strategies, corresponding to a reduction of 7% (range -2% to 13%) for (1) and (2). Target homogeneity, defined as D(2%)-D(98%) was 18% better for (2). Mean dose to the healthy tissue, defined as body minus PTV, had 10% better reduction with (2). The isocenter's position and the jaw's apertures are significant parameters in the optimization of the TMI with RA technique, giving the medical physicist a crucial role in driving the optimization and thus obtaining the best plan. A clinical protocol started in our department in October 2010.

0 Bookmarks
 · 
66 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To report the initial institute experience in terms of dosimetric and technical aspects in stereotactic body radiation therapy (SBRT) delivered using flattening filter free (FFF) beam in patients with liver lesions. From October 2010 to September 2011, 55 consecutive patients with 73 primary or metastatic hepatic lesions were treated with SBRT on TrueBeam using FFF beam and RapidArc technique. Clinical target volume (CTV) was defined on multi-phase CT scans, PET/CT, MRI, and 4D-CT. Dose prescription was 75 Gy in 3 fractions to planning target volume (PTV). Constraints for organs at risk were: 700 cc of liver free from the 15 Gy isodose, Dmax < 21 Gy for stomach and duodenum, Dmax < 30 Gy for heart, D0.1 cc < 18 Gy for spinal cord, V15 Gy < 35% for kidneys. The dose was downscaled in cases of not full achievement of dose constraints. Daily cone beam CT (CBCT) was performed. Forty-three patients with a single lesion, nine with two lesions and three with three lesions were treated with this protocol. Target and organs at risk objectives were met for all patients. Mean delivery time was 2.8 ± 1.0 min. Pre-treatment plan verification resulted in a Gamma Agreement Index of 98.6 ± 0.8%. Mean on-line co-registration shift of the daily CBCT to the simulation CT were: -0.08, 0.05 and -0.02 cm with standard deviations of 0.33, 0.39 and 0.55 cm in, vertical, longitudinal and lateral directions respectively. SBRT for liver targets delivered by means of FFF resulted to be feasible with short beam on time.
    Radiation Oncology 01/2012; 7:16. · 2.11 Impact Factor

Full-text

View
0 Downloads
Available from
Aug 29, 2014