Fluoride bioavailability in saliva and plaque.

Faculty of Health, Department of Dentistry, University of Witten/Herdecke, Alfred Herrhausenstrasse 50, 58448 Witten, Germany.
BMC Oral Health (Impact Factor: 1.15). 01/2012; 12:3. DOI: 10.1186/1472-6831-12-3
Source: PubMed

ABSTRACT Different fluoride formulations may have different effects on caries prevention. It was the aim of this clinical study to assess the fluoride content, provided by NaF compared to amine fluoride, in saliva and plaque.
Eight trained volunteers brushed their teeth in the morning for 3 minutes with either NaF or amine fluoride, and saliva and 3-day-plaque-regrowth was collected at 5 time intervals during 6 hours after tooth brushing. The amount of collected saliva and plaque was measured, and the fluoride content was analysed using a fluoride sensitive electrode. All subjects repeated all study cycles 5 times, and 3 cycles per subject underwent statistical analysis using the Wilcoxon-Mann-Whitney test.
Immediately after brushing the fluoride concentration in saliva increased rapidly and dropped to the baseline level after 360 minutes. No difference was found between NaF and amine fluoride. All plaque fluoride levels were elevated after 30 minutes until 120 minutes after tooth brushing, and decreasing after 360 minutes to baseline. According to the highly individual profile of fluoride in saliva and plaque, both levels of bioavailability correlated for the first 30 minutes, and the fluoride content of saliva and plaque was back to baseline after 6 hours.
Fluoride levels in saliva and plaque are interindividually highly variable. However, no significant difference in bioavailability between NaF and amine fluoride, in saliva, or in plaque was found.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The assessment of the fluoride kinetics in whole saliva as well as in the different salivary phases (supernatant saliva and sediment) is essential for the understanding of fluoride bioavailability. To assess the fluoride content, provided by sodium fluoride and amine fluoride, in the supernatant saliva and in salivary sediment. Seven trained volunteers were randomly attributed to 2 groups in a cross-over design and brushed their teeth in the morning for 3 min with a product containing either sodium fluoride or amine fluoride. Saliva was collected before, immediately after tooth brushing and 30, 120, and 360 min later and measured. The samples were centrifuged 10 min at 3024 × g. Fluoride content of the supernatant saliva and of the sediment was analysed using a fluoride sensitive electrode. All subjects repeated the study cycles 2 times, and statistical analyses were made using the nonparametric sign test for related samples, the Wilcoxon-Mann-Whitney-test for independent samples. There was a significant increase in fluoride immediately after tooth brushing in both groups in saliva and sediment. The distribution of fluoride between salivary sediment and supernatant saliva (ratio) varied considerably at the different collection times: decreased from 17.87 in baseline samples of saliva to 0.07 immediately and to 0.86 half an hour after tooth brushing in the sodium fluoride group and from 14.33 to 2.85 and to 3.09 in the amine fluoride group. Furthermore after 120 min and after 360 min after tooth brushing the ratio increased from 17.6 to 31.6 in the sodium fluoride group and from 20.5 to 25.76 in the amine fluoride group. No difference was found in the sediment-supernatant saliva ratio between the sodium fluoride and the amine fluoride groups 360 min after tooth brushing. For the assessment of fluoride kinetics in whole saliva it is necessary to pay attention to at least four factors: fluoride formulation, time after fluoride application, fluoride concentration in supernatant saliva and fluoride concentration in salivary sediment. This study was approved by the Ethical Committee of the University of Witten/Herdecke permission 21/2008.
    Archives of oral biology 02/2012; 57(7):870-6. · 1.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: Detailed information about the size of the oral mucosa is scarce in the literature, and those studies that do exist do not take into account the size of the tongue or the enlargement of the surface by the papillae. Because of the various functions of the oral mucosa in the maintenance of oral health, knowledge of its true size may provide a better understanding of the physiology of the oral cavity and some oral diseases and direct future therapeutic strategies. The aim of this study was to determine the total size of the oral mucosa. METHODS: Five human adult cadaver heads were cut in the median sagittal plane, and the total area of the oral surface was determined using silicon casts. The surface of the tongue was measured with quantitative profilometry. Photographs of oral blood vessels were taken in different areas of the oral mucosa of adult test subjects using intravital microscopy, and the pictures were compared with vessel casts of the oral mucosal capillaries of a maccaca fasciculrais monkey, which was studied using a scanning electron microscope. RESULTS: The results showed that the dorsal side of the tongue comprises a large proportion of the total oral mucosal surface. The surface area of the epithelium increases moving from anterior to posterior on the tongue, and the number of underlying blood vessels increases proportionally. CONCLUSIONS: It can be concluded that the back of the tongue plays an important role in the oral resorption of drugs. Clinical relevance: The results may be of relevance for the delivery and development of oral drug application.
    Head & Face Medicine 03/2013; 9(1):8. · 0.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress-related variations of fluoride concentration in supernatant saliva and salivary sediment, salivary cortisol, total protein and pH after acute mental stress were assessed. The hypothesis was that stress reactions have no influence on these parameters. Thirty-four male students were distributed into two groups: first received the stress exposure followed by the same protocol two weeks later but without stress exposure, second underwent the protocol without stress exposure followed by the stress exposure two weeks later. The stressor was a public speech followed by tooth brushing. Saliva was collected before, immediately after stress induction and immediately, at 10, 30 and 120 min. after tooth brushing. Cortisol concentrations, total protein, intraoral pH, and fluoride content in saliva were measured. The data were analyzed statistically. Salivary sediment was ca 4.33% by weight of whole unstimulated saliva. Fluoride bioavailability was higher in salivary sediment than in supernatant saliva. The weight and fluoride concentration was not altered during 2 hours after stress exposure. After a public speech, the salivary cortisol concentration significantly increased after 20 minutes compared to the baseline. The salivary protein concentration and pH also increased. Public speaking influences protein concentration and salivary pH but does not alter the fluoride concentration of saliva.
    Scientific Reports 05/2014; 4:4884. · 5.08 Impact Factor

Full-text (2 Sources)

Available from
May 15, 2014