Article

Fluoride bioavailability in saliva and plaque

Faculty of Health, Department of Dentistry, University of Witten/Herdecke, Alfred Herrhausenstrasse 50, 58448 Witten, Germany.
BMC Oral Health (Impact Factor: 1.15). 01/2012; 12:3. DOI: 10.1186/1472-6831-12-3
Source: PubMed

ABSTRACT Different fluoride formulations may have different effects on caries prevention. It was the aim of this clinical study to assess the fluoride content, provided by NaF compared to amine fluoride, in saliva and plaque.
Eight trained volunteers brushed their teeth in the morning for 3 minutes with either NaF or amine fluoride, and saliva and 3-day-plaque-regrowth was collected at 5 time intervals during 6 hours after tooth brushing. The amount of collected saliva and plaque was measured, and the fluoride content was analysed using a fluoride sensitive electrode. All subjects repeated all study cycles 5 times, and 3 cycles per subject underwent statistical analysis using the Wilcoxon-Mann-Whitney test.
Immediately after brushing the fluoride concentration in saliva increased rapidly and dropped to the baseline level after 360 minutes. No difference was found between NaF and amine fluoride. All plaque fluoride levels were elevated after 30 minutes until 120 minutes after tooth brushing, and decreasing after 360 minutes to baseline. According to the highly individual profile of fluoride in saliva and plaque, both levels of bioavailability correlated for the first 30 minutes, and the fluoride content of saliva and plaque was back to baseline after 6 hours.
Fluoride levels in saliva and plaque are interindividually highly variable. However, no significant difference in bioavailability between NaF and amine fluoride, in saliva, or in plaque was found.

Download full-text

Full-text

Available from: Wolfgang H Arnold, Aug 22, 2015
0 Followers
 · 
478 Views
  • Source
    • "The fluoride source used in SRP is monofluorophosphate (MFP), which is remarkably stable at physiological temperature in neutral or slightly alkaline pH [14]. However, non-specific salivary phosphatases can hydrolyze monofluorophosphate, releasing phosphoric acid and free fluoride into solution which are known to influence the nucleation of hydroxyapatite onto bioactive glass surfaces [15] [16] [17]. Unfortunately, not all published research on the in vitro characterization of SRP in synthetic media specifically mentions the use of phosphatase. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives. The aim was to introduce a new methodology to characterize toothpaste containing bioactive glass and to evaluate the effect of release of fluoride ions, by cleaving monofluorophosphate (MFP), on the mineral forming ability of Sensodyne Repair & Protect (SRP). which contains NovaMinTM (bioactive glass, 45S5 composition). Methods. SRP, NovaMin particles, and placebo paste (PLA) which did not contain NovaMin, were immersed into a remineralization media (RS), which mimics the ionic strength of human saliva, for 3 days with different concentrations of alkaline phosphatase (ALP): 0, 25 and 75 U.L Results. Hydroxyapatite (HA) formed on the surface of BG alone (after 1 h) and in toothpaste (after 2 h), whereas PLA did not induce any precipitation. ALP cleaved MFP at different rates depending on the enzyme concentration. Increasing the concentration of ALP from 0 and 75 U.L
    07/2015; 1(1):41-50. DOI:10.1515/bglass-2015-0005
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim of this in-vitro-study was to assess the remineralization potential of a tooth cleaning tablet with different fluoride content quantitatively using EDX analysis. Twenty three caries free impacted third molars were examined; enamel surfaces were wax coated leaving two 3x4mm windows for exposure to demineralization/remineralization cycles. The teeth were randomly assigned to 4 groups of 5 control and 6 experimental teeth each. Demineralization by standardized HEC-gel, pH 4.7 at 37°C for 72h, was alternated by rinsing in remineralization solution, pH 7.0 at 37°C for 72h, total challenge time 432h. The negative control group N was treated during remineralization cycles with saline; positive control group P was treated with remineralization solution; experimental group D1 was exposed to remineralization solution containing Denttabs®-tablets with 1450 ppm F; experimental group D2 was exposed to remineralization solution and Denttabs®-tablets with 4350 ppm F. Each tooth was cut into serial sections and analyzed by scanning electron microscopy with EDX element analysis for assessment of the different zones of the lesions in 3 representative sections. Statistical analysis was based on the AVOVA test for repeated measurements and post hoc Bonferroni adjustment. The results showed a significantly higher Ca and P content in the body of the lesion in both fluoride treated groups compared to the controls. It can be concluded that higher concentrations of NaF may be more effective in remineralization of early advanced caries lesions.
    The Open Dentistry Journal 05/2011; 5:84-9. DOI:10.2174/1874210601105010084
  • [Show abstract] [Hide abstract]
    ABSTRACT: The assessment of the fluoride kinetics in whole saliva as well as in the different salivary phases (supernatant saliva and sediment) is essential for the understanding of fluoride bioavailability. To assess the fluoride content, provided by sodium fluoride and amine fluoride, in the supernatant saliva and in salivary sediment. Seven trained volunteers were randomly attributed to 2 groups in a cross-over design and brushed their teeth in the morning for 3 min with a product containing either sodium fluoride or amine fluoride. Saliva was collected before, immediately after tooth brushing and 30, 120, and 360 min later and measured. The samples were centrifuged 10 min at 3024 × g. Fluoride content of the supernatant saliva and of the sediment was analysed using a fluoride sensitive electrode. All subjects repeated the study cycles 2 times, and statistical analyses were made using the nonparametric sign test for related samples, the Wilcoxon-Mann-Whitney-test for independent samples. There was a significant increase in fluoride immediately after tooth brushing in both groups in saliva and sediment. The distribution of fluoride between salivary sediment and supernatant saliva (ratio) varied considerably at the different collection times: decreased from 17.87 in baseline samples of saliva to 0.07 immediately and to 0.86 half an hour after tooth brushing in the sodium fluoride group and from 14.33 to 2.85 and to 3.09 in the amine fluoride group. Furthermore after 120 min and after 360 min after tooth brushing the ratio increased from 17.6 to 31.6 in the sodium fluoride group and from 20.5 to 25.76 in the amine fluoride group. No difference was found in the sediment-supernatant saliva ratio between the sodium fluoride and the amine fluoride groups 360 min after tooth brushing. For the assessment of fluoride kinetics in whole saliva it is necessary to pay attention to at least four factors: fluoride formulation, time after fluoride application, fluoride concentration in supernatant saliva and fluoride concentration in salivary sediment. This study was approved by the Ethical Committee of the University of Witten/Herdecke permission 21/2008.
    Archives of oral biology 02/2012; 57(7):870-6. DOI:10.1016/j.archoralbio.2012.01.011 · 1.88 Impact Factor
Show more