Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway.

Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
Molecular Neurodegeneration (Impact Factor: 5.29). 01/2012; 7:2. DOI: 10.1186/1750-1326-7-2
Source: PubMed

ABSTRACT Dominantly inherited missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease, but its normal physiological function remains unclear. We previously reported that loss of LRRK2 causes impairment of protein degradation pathways as well as increases of apoptotic cell death and inflammatory responses in the kidney of aged mice.
Our analysis of LRRK2-/- kidneys at multiple ages, such as 1, 4, 7, and 20 months, revealed unique age-dependent development of a variety of molecular, cellular, and ultrastructural changes. Gross morphological abnormalities of the kidney, including altered size, weight, texture, and color, are evident in LRRK2-/- mice at 3-4 months of age, along with increased accumulation of autofluorescent granules in proximal renal tubules. The ratio of kidney/body weight in LRRK2-/- mice is increased at 1, 4, and 7 months of age (-10% at 1 month, and -20% at 4 and 7 months), whereas the ratio is drastically decreased at 20 months of age (-50%). While kidney filtration function evaluated by levels of blood urea nitrogen and serum creatinine is not significantly affected in LRRK2-/- mice at 12-14 months of age, expression of kidney injury molecule-1, a sensitive and specific biomarker for epithelial cell injury of proximal renal tubules, is up-regulated (-10-fold). Surprisingly, loss of LRRK2 causes age-dependent bi-phasic alterations of the autophagic activity in LRRK2-/- kidneys, which is unchanged at 1 month of age, enhanced at 7 months but reduced at 20 months, as evidenced by corresponding changes in the levels of LC3-I/II, a reliable autophagy marker, and p62, an autophagy substrate. Levels of α-synuclein and protein carbonyls, a general oxidative damage marker, are also decreased in LRRK2-/- kidneys at 7 months of age but increased at 20 months. Interestingly, the age-dependent bi-phasic alterations in autophagic activity in LRRK2-/- kidneys is accompanied by increased levels of lysosomal proteins and proteases at 1, 7, and 20 months of age as well as progressive accumulation of autolysosomes and lipofuscin granules at 4, 7-10, and 20 months of age.
LRRK2 is important for the dynamic regulation of autophagy function in vivo.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The last 2 decades represent a period of unparalleled advancement in the understanding of the pathogenesis of Parkinson disease (PD). The discovery of several forms of familial parkinsonism with mendelian inheritance has elucidated insights into the mechanisms underlying the degeneration of dopaminergic neurons of the substantia nigra that histologically characterize PD. α-Synuclein, the principal component of Lewy bodies, remains the presumed pathogen at the heart of the current model; however, concurrently, a diverse range of other mechanisms have been implicated. The creation of a coherent disease model will be crucial to the development of effective disease modifying therapies for sporadic PD. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neurologic Clinics 11/2014; 33(1). DOI:10.1016/j.ncl.2014.09.010 · 1.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leprosy is a chronic infectious and neurological disease that is caused by infection of Mycobacterium leprae (M. leprae). A recent genome-wide association study indicated a suggestive association of LRRK2 genetic variant rs1873613 with leprosy in Chinese population. To validate this association and further identify potential causal variants of LRRK2 with leprosy, we genotyped 13 LRRK2 variants in 548 leprosy patients and 1078 healthy individuals from Yunnan Province and (re-)analyzed 3225 Han Chinese across China. Variants rs1427267, rs3761863, rs1873613, rs732374 and rs7298930 were significantly associated with leprosy per se and/or paucibacillary leprosy (PB). Haplotype A-G-A-C-A was significantly associated with leprosy per se (P=0.018) and PB (P=0.020). Overexpression of the protective allele (Thr2397) of rs3761863 in HEK293 cells led to a significantly increased nuclear factor of activated T-cells' activity compared with allele Met2397 after lipopolysaccharides stimulation. Allele Thr2397 could attenuate 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced autophagic activity in U251 cells. These data suggest that the protective effect of LRRK2 variant p.M2397T on leprosy might be mediated by increasing immune response and decreasing neurotoxicity after M. leprae loading. Our findings confirm that LRRK2 is a susceptible gene to leprosy in Han Chinese population.Genes and Immunity advance online publication, 18 December 2014; doi:10.1038/gene.2014.72.
    Genes and Immunity 12/2014; 16(2). DOI:10.1038/gene.2014.72 · 3.79 Impact Factor
  • Source