Article

Unusual timing of CD127 expression by mouse uterine natural killer cells

Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 25 Orde St., Toronto, ON, Canada.
Journal of leukocyte biology (Impact Factor: 4.99). 03/2012; 91(3):417-26. DOI: 10.1189/jlb.1011501
Source: PubMed

ABSTRACT Decidualization, a progesterone-dependent process that alters endometrial stromal cells at implantation sites in humans and rodents, is accompanied by a highly regulated, NK cell-dominated leukocyte influx into decidual basalis (DB). Whether uNK cells differentiate from uterine progenitor cells is unknown, as are the mechanisms restricting leukocytes to DB. We asked if cells expressing the early NK lineage marker CD127 (IL-7Rα) occurred in mouse decidua. CD127 was absent from gd6.5 decidual lymphoid cells but became expressed by a mature uNK cell subset in gd10.5 DB. DB and transient myometrial structures (MLAp) that ring maternal blood vessels supplying placentae expressed IL-7 and TSLP, the CD127 ligands, but with differing temporal and spatial patterns. UNK cells expressed TSLPR, and study of gd10.5 implantation sites from mice deleted for IL-7, CD127, or TSLPR suggested that IL-7 and its receptor have physiological roles in limiting expansion of immature uNK cells within MLAp, while the TSLP signaling pathway is used in DB to sustain IFN-γ production from a subset of mature uNK cells. Regionalized, dynamic expression of the additional lymphoid organ stromal markers gp38/podoplanin and ER-TR7, but not CD157, were seen by immunohistochemistry in implantation sites, and DB and MLAp contained transcripts for Aire, a tolerance-promoting factor. These observations suggest that CD127(+) NK lineage progenitors are not present in the early postimplantation period of mouse uterus and that decidualized endometrial stroma has key immunoregulatory properties.

0 Followers
 · 
156 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding of uterine natural killer (uNK) cell functions during normal pregnancy remains incomplete. Cloud tag analysis of literature was used to document themes addressed experimentally for uNK cells. Immunohistochemistry, including whole-mount staining of early implantation sites, separation of uNK cells into molecularly distinct subsets, and physiologic measurements in normal and mutant mice, are further advancing understanding of uNK cell biology. Literature analyses revealed three key, current uNK cell research themes: angiogenesis, spiral arterial remodeling/pre-eclampsia/hypertension and infertility. UNK cells are being defined as cells potentially regulated by Wnt signaling that are heterogeneous in progenitor source and function and make unique contributions to implantation site development prior to spiral arterial remodeling. Future studies are poised to define uNK cell progenitor cells, identify the signaling pathways supporting established uNK cell functions and move current understanding of mouse uNK cells to clinical research questions.
    American Journal Of Reproductive Immunology 05/2012; 68(4):282-9. DOI:10.1111/j.1600-0897.2012.01160.x · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endometrial decidualization, a process essential for blastocyst implantation in species with hemochorial placentation, is accompanied by an enormous but transient influx of natural killer (NK) cells. Mouse uterine NK (uNK) cell subsets have been defined by diameter and cytoplasmic granule number, reflecting stage of maturity, and by histochemical reactivity with Periodic Acid Schiff (PAS) reagent with or without co-reactivity with Dolichos biflorus agglutinin (DBA) lectin. We asked whether DBA- and DBA+ mouse uNK cells were equivalent using quantitative RT-PCR analyses of flow-separated, midpregnancy (Gestation Day [gd] 10) cells and immunohistochemistry. CD3E (CD3)-IL2RB (CD122)+DBA cells were identified as the dominant Ifng transcript source. Skewed IFNG production by uNK cell subsets was confirmed by analysis of uNK cells from eYFP-tagged IFNG-reporter mice. In contrast, CD3E-IL2RB+DBA+ uNK cells expressed genes compatible with significantly greater potential for IL22 synthesis, angiogenesis, and participation in regulation mediated by the renin-angiotensin system (RAS). CD3E-IL2RB+DBA+ cells were further divided into VEGFA+ and VEGFA- subsets. CD3E-IL2RB+DBA+ uNK cells but not CD3E-IL2RB+DBA- uNK cells arose from circulating, bone marrow-derived progenitor cells by gd6. These findings indicate the heterogeneous nature of mouse uNK cells and suggest that studies using only DBA+ uNK cells will give biased data that does not fully represent the uNK cell population.
    Biology of Reproduction 08/2012; 87(4):81. DOI:10.1095/biolreprod.112.102293 · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Uterine vascular changes, critical for pregnancy success, occur at each implant site during endometrial decidualization. Mesometrial decidualization recruits high numbers of angiogenic, uterine Natural Killer (uNK) cells that trigger midpregnancy spiral arterial remodeling. We postulated that uNK cells contribute to early decidual angiogenesis as endothelial-cell extrinsic sources of Delta-like ligand 1 (DLL1), a molecule that induces endothelial tip cell differentiation and orthogonal vascular growth in other tissues. Virgin uteri expressed Dll1 mesometrially and anti-mesometrially and relative expression increased in both anatomic regions as pregnancy progressed. Analyses of transcripts from gd10.5 uNK cells flow sorted on the basis of expression of Dolichos biflorus agglutinin (DBA) lectin revealed that DBA+ but not DBA- uNK cells expressed Dll1. Immunostaining at gd4.5 found DLL1-expressing cells rare. At gd6.5, DBA+ uNK cells at all stages of maturation expressed DLL1. By gd10.5, DLL1 immunoreactivity was strongly expressed by some but not all DBA+ uNK cells and more weakly by DBA- cells. DLL1+ cells were mesometrially stratified and concentrated within central decidua basalis. Our data suggest that uNK cells have the potential to induce endothelial tip cell differentiation and to promote non-planar vascular growth within early decidua basalis.
    PLoS ONE 12/2012; 7(12):e52037. DOI:10.1371/journal.pone.0052037 · 3.53 Impact Factor