Article

Unusual timing of CD127 expression by mouse uterine natural killer cells

Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 25 Orde St., Toronto, ON, Canada.
Journal of leukocyte biology (Impact Factor: 4.99). 03/2012; 91(3):417-26. DOI: 10.1189/jlb.1011501
Source: PubMed

ABSTRACT Decidualization, a progesterone-dependent process that alters endometrial stromal cells at implantation sites in humans and rodents, is accompanied by a highly regulated, NK cell-dominated leukocyte influx into decidual basalis (DB). Whether uNK cells differentiate from uterine progenitor cells is unknown, as are the mechanisms restricting leukocytes to DB. We asked if cells expressing the early NK lineage marker CD127 (IL-7Rα) occurred in mouse decidua. CD127 was absent from gd6.5 decidual lymphoid cells but became expressed by a mature uNK cell subset in gd10.5 DB. DB and transient myometrial structures (MLAp) that ring maternal blood vessels supplying placentae expressed IL-7 and TSLP, the CD127 ligands, but with differing temporal and spatial patterns. UNK cells expressed TSLPR, and study of gd10.5 implantation sites from mice deleted for IL-7, CD127, or TSLPR suggested that IL-7 and its receptor have physiological roles in limiting expansion of immature uNK cells within MLAp, while the TSLP signaling pathway is used in DB to sustain IFN-γ production from a subset of mature uNK cells. Regionalized, dynamic expression of the additional lymphoid organ stromal markers gp38/podoplanin and ER-TR7, but not CD157, were seen by immunohistochemistry in implantation sites, and DB and MLAp contained transcripts for Aire, a tolerance-promoting factor. These observations suggest that CD127(+) NK lineage progenitors are not present in the early postimplantation period of mouse uterus and that decidualized endometrial stroma has key immunoregulatory properties.

0 Followers
 · 
154 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Successful pregnancy and long-term, post-natal maternal and offspring cardiac, vascular and metabolic health require key maternal cardiovascular adaptations over gestation. Within the pregnant decidualizing uterus, coordinated vascular, immunological and stromal cell changes occur. Considerable attention has been given to the roles of uterine natural killer (uNK) cells in initiating decidual spiral arterial remodeling, a process normally completed by mid-gestation in mice and in humans. However, leukocyte roles in much earlier, region specific, decidual vascular remodeling are now being defined. Interest in immune cell-promoted vascular remodeling is driven by vascular aberrations that are reported in human gestational complications such as infertility, recurrent spontaneous abortion, preeclampsia (PE) and fetal growth restriction. Appropriate maternal cardiovascular responses during pregnancy protect mothers and their children from later cardiovascular disease risk elevation. One of the earliest uterine responses to pregnancy in species with hemochorial placentation is stromal cell decidualization, which creates unique niches for angiogenesis and leukocyte recruitment. In early decidua basalis, the aspect of the implantation site that will cradle the developing placenta and provide the major blood vessels to support mature placental functions, leukocytes are greatly enriched and display specialized properties. UNK cells, the most abundant leukocyte subset in early decidua basalis, have angiogenic abilities and are essential for normal early decidual angiogenesis. The regulation of uNK cells and their roles in determining maternal and progeny cardiovascular health over pregnancy and postpartum are discussed.Cellular & Molecular Immunology advance online publication, 28 July 2014; doi:10.1038/cmi.2014.63.
    Cellular & molecular immunology 07/2014; 11(6). DOI:10.1038/cmi.2014.63 · 4.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Uterine natural killer (uNK) cells remarkably increase in number after implantation. NK cells or their precursors migrate from the blood stream and contribute to the increase. However, the contribution of uNK cells present in the virgin uterus has been unclear. To elucidate this issue, we examined uterine leukocyte subsets during pregnancy in BALB/c mice. The most dramatic change was the massive decrease in CD11b(-) or Gr-1(-) cells at gestation day (gd) 6. Uterine NK cells at gd 0 were CD11b(-), and severely decreased at gd 6. The decrease was selective, and the proportion of other cells examined did not decrease. Uterine NK cells almost recovered at gd 12. These cells at gd 12 were more mature and/or activated in terms of expression of CD11b, CD27, CD127, or B220 than at gd 0. CXCL12 expression was observed on uterine cells at gd 0 or 6, but not at gd 12, whereas CXCR4 was detected on uNK cells at gd 0 and 12. A much higher expression of IL-15 in uterine cells or interferon-gamma expression in uNK cells was observed at gd 12 than at gd 0. IL-15 receptor alpha chain was detected on uNK cells at gd 12, but not at gd 0. Taken together, these findings were consistent with our interpretation that uNK cells present at gd 0 do not contribute to the increase of uNK cell number after implantation, and NK cells or their precursors migrate into the uterus, mature, and produce interferon-gamma to support pregnancy.
    Biology of Reproduction 09/2013; 89(4). DOI:10.1095/biolreprod.113.109009 · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An improved mechanistic understanding of the adaptational processes mounted during mammalian reproduction is emerging. Intricate pathways occurring at the fetomaternal interface, such as the formation of a functional synapse between invading fetal trophoblast cells, and the involvement of various maternal immune cell subsets and epigenetically modified decidual stromal cells have now been identified. These complex pathways synergistically create a tolerogenic niche in which the semiallogeneic fetus can develop. New insights into fetomaternal immune cross-talk may help us to understand the pathogenesis of pregnancy complications as well as poor postnatal health. Moreover, the effects of maternal immune adaptation to pregnancy on autoimmune disease activity are becoming increasingly evident. Thus, insights into fetomaternal immune cross-talk not only advance our understanding of pregnancy-related complications but also may be informative on how immune tolerance can be modulated in clinical settings outside the context of reproduction.
    Nature medicine 05/2013; 19(5):548-56. DOI:10.1038/nm.3160 · 28.05 Impact Factor