Article

Phosphatidylinositol 3-kinase and protein kinase D1 specifically cooperate to negatively regulate the insulin-like growth factor signaling pathway

LBPA, ENS de Cachan, CNRS, Cachan, France.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 02/2012; 1823(2):558-69. DOI: 10.1016/j.bbamcr.2011.12.007
Source: PubMed

ABSTRACT Insulin receptor substrate-1 (IRS-1) is a key protein in the insulin-like growth factor (IGF) signaling whose tyrosine phosphorylation by the type 1 IGF receptor is necessary for the recruitment and activation of the downstream effectors. Through the analysis of cross-talks occurring between different tyrosine kinase receptor-dependent signaling pathways, we investigated how two growth factors [epidermal growth factor (EGF) and fibroblast growth factor (FGF)] could modulate the IGF-I-induced IRS-1 tyrosine phosphorylation and its downstream signaling. EGF and FGF inhibited IGF-I-stimulated tyrosine phosphorylation of IRS-1 and the subsequent IGF-I-induced phosphatidylinositol 3-kinase (PI 3-kinase) activity. These EGF- and FGF-inhibitory effects were dependent on both PI 3-kinase and protein kinase D1 (PKD1) signaling pathways but independent on the extracellular signal-regulated kinase (ERK) pathway. PKD1, which was activated independently of the PI 3-kinase pathway, associated with IRS-1 in response to EGF or FGF. Unlike PI 3-kinase, PKD1 did not mediate the EGF- or FGF-induced-IRS-1 serine 307 phosphorylation which was described to inhibit IRS-1. Interestingly, specific inhibition of either PI 3-kinase or PKD1 totally impaired EGF- or FGF-induced inhibition of IGF-I-stimulated IRS-1 tyrosine phosphorylation. This indicated that serine 307 phosphorylation of IRS-1 is not sufficient per se to inhibit the IGF signaling pathway and demonstrated for the first time that the negative regulation of IRS-1 requires the coordinated action of PI 3-kinase and PKD1. This further suggests that PKD1 may be an attractive target for innovative strategies that target the IGF signaling pathway.

Download full-text

Full-text

Available from: Jean-Marc Ricort, Dec 16, 2014
3 Followers
 · 
200 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We recently described that epidermal and fibroblast growth factors (EGF and FGF) regulate the IGF-I signaling pathway at the level of IRS-1 through the cooperative action of two independent signaling pathways; one dependent on phosphatidylinositol 3-kinase (PI 3-kinase) and the other on protein kinase D1 (PKD1) (Karam et al. [22]). To determine whether this mechanism could be generalized to another tyrosine kinase receptor-dependent growth factor, the effect of platelet-derived growth factor (PDGF) on the IGF-I signaling pathway was studied. PDGF inhibited IGF-I-stimulated IRS-1 tyrosine phosphorylation and subsequent IGF-I-induced PI 3-kinase activity, and stimulated IRS-1 serine 307 phosphorylation. These effects were mediated through a PI 3-kinase-dependent but extracellular signal-regulated kinase (ERK)-independent signaling pathway. However, PDGF-induced IRS-1 serine 307 phosphorylation was not sufficient per se to inhibit the IGF-I signaling but required another independent pathway. Noteworthy, although acutely stimulated by PDGF, and contrary to what we previously described (Karam et al. [22]), PKD1 did not associate with IRS-1and did not inhibit the IGF-I signaling in response to PDGF. However, we identified PKCβI as a new regulatory partner of PI 3-kinase for PDGF-induced inhibition of the IGF-I signaling pathway. Therefore, our results reinforce the idea that a coordinated action of two independent pathways seems absolutely necessary to negatively regulate IRS-1. Moreover, they also demonstrated that, depending of the cross-talk considered, subtle and specific regulatory mechanisms occur at the level of IRS-1 and that a unique regulatory model is not conceivable.
    Biochimica et Biophysica Acta 02/2013; 1833(6). DOI:10.1016/j.bbamcr.2013.02.019 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: About 70% of human breast cancers express and are dependent for growth on estrogen receptor α (ERα), and therefore are sensitive to antiestrogen therapies. However, progression to an advanced, more aggressive phenotype is associated with acquisition of resistance to antiestrogens and/or invasive potential. In this study, we highlight the role of the serine/threonine-protein kinase D1 (PKD1) in ERα-positive breast cancers. Growth of ERα-positive MCF-7 and MDA-MB-415 human breast cancer cells was assayed in adherent or anchorage-independent conditions in cells overexpressing or depleted for PKD1. PKD1 induces cell growth through both an ERα-dependent manner, by increasing ERα expression and cell sensitivity to 17β-estradiol, and an ERα-independent manner, by reducing cell dependence to estrogens and conferring partial resistance to antiestrogen ICI 182,780. PKD1 knockdown in MDA-MB-415 cells strongly reduced estrogen-dependent and independent invasion. Quantification of PKD1 mRNA levels in 38 cancerous and non-cancerous breast cell lines and in 152 ERα-positive breast tumours from patients treated with adjuvant tamoxifen showed an association between PKD1 and ERα expression in 76.3% (29/38) of the breast cell lines tested and a strong correlation between PKD1 expression and invasiveness (P < 0.0001). In tamoxifen-treated patients, tumours with high PKD1 mRNA levels (n = 77, 50.66%) were significantly associated with less metastasis-free survival than tumours with low PKD1 mRNA expression (n = 75, 49.34%; P = 0.031). Moreover, PKD1 mRNA levels are strongly positively associated with EGFR and vimentin levels (P < 0.0000001). Thus, our study defines PKD1 as a novel attractive prognostic factor and a potential therapeutic target in breast cancer.
    Journal of Cellular and Molecular Medicine 06/2014; 18(12). DOI:10.1111/jcmm.12322 · 3.70 Impact Factor