Article

Muscle pain differentially modulates short interval intracortical inhibition and intracortical facilitation in primary motor cortex.

The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Science, St Lucia, Australia.
The journal of pain: official journal of the American Pain Society (Impact Factor: 4.22). 02/2012; 13(2):187-94. DOI: 10.1016/j.jpain.2011.10.013
Source: PubMed

ABSTRACT Excitability of the motor cortex can be suppressed during muscle pain. Yet the mechanisms are largely unknown. Short interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were examined as possible candidate mechanisms to underpin this change. SICI and ICF were investigated in 11 healthy individuals before, during and after infusion of hypertonic saline into right first dorsal interosseous (FDI). Using paired-pulse transcranial magnetic stimulation (TMS), interstimulus intervals of 2, 3, and 13 ms were investigated. Pain intensity and quality were recorded using a 10-cm visual analogue scale and the McGill Pain Questionnaire. Resting motor threshold and motor-evoked potentials (MEPs) to single TMS stimuli were recorded before and after pain. Electromyographic recordings were made from right FDI and abductor digiti minimi. Participants reported an average pain intensity of 5.8 (1.6) cm. MEP amplitudes decreased in both muscles. Compared with the pre-pain condition, SICI was increased following pain, but not during. ICF was decreased both during and after pain when compared with the pre-pain condition. These findings suggest that muscle pain differentially modulates SICI and ICF. Although the functional relevance is unknown, we hypothesize decreased facilitation and increased inhibition may contribute to the restriction of movement of a painful body part. PERSPECTIVE: This article provides evidence for decreased intracortical facilitation and increased short interval intracortical inhibition in response to muscle pain. This finding is relevant to clinicians as a mechanism which may underlie restricted movement in acute and chronic pain.

Full-text

Available from: Siobhan Schabrun, Mar 31, 2015
0 Bookmarks
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Integration of information between multiple cortical regions of the pain neuromatrix is thought to underpin pain modulation. Although altered processing in the primary motor (M1) and sensory (S1) cortices is implicated in separate studies, the simultaneous changes in and the relationship between these regions are unknown yet. The primary aim was to assess the effects of anodal transcranial direct current stimulation (a-tDCS) over superficial regions of the pain neuromatrix on M1 and S1 excitability. The secondary aim was to investigate how M1 and S1 excitability changes affect sensory (STh) and pain thresholds (PTh). Twelve healthy participants received 20 min a-tDCS under five different conditions including a-tDCS of M1, a-tDCS of S1, a-tDCS of DLPFC, sham a-tDCS, and no-tDCS. Excitability of dominant M1 and S1 were measured before, immediately, and 30 minutes after intervention respectively. Moreover, STh and PTh to peripheral electrical and mechanical stimulation were evaluated. All outcome measures were assessed at three time-points of measurement by a blind rater. A-tDCS of M1 and dorsolateral prefrontal cortex (DLPFC) significantly increased brain excitability in M1 (p < 0.05) for at least 30 min. Following application of a-tDCS over the S1, the amplitude of the N20-P25 component of SEPs increased immediately after the stimulation (p < 0.05), whilst M1 stimulation decreased it. Compared to baseline values, significant STh and PTh increase was observed after a-tDCS of all three stimulated areas. Except in M1 stimulation, there was significant PTh difference between a-tDCS and sham tDCS. Discussion: a-tDCS of M1 is the best spots to enhance brain excitability than a-tDCS of S1 and DLPFC. Surprisingly, a-tDCS of M1 and S1 has diverse effects on S1 and M1 excitability. A-tDCS of M1, S1, and DLPFC increased STh and PTh levels. Given the placebo effects of a-tDCS of M1 in pain perception, our results should be interpreted with caution, particularly with respect to the behavioural aspects of pain modulation.
    PLoS ONE 01/2015; 10(3). DOI:10.1371/journal.pone.0118340 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary motor cortical (M1) adaptation has not been investigated in the transition to sustained muscle pain. Daily injection of nerve growth factor (NGF) induces hyperalgesia reminiscent of musculoskeletal pain and provides a novel model to study M1 in response to progressively developing muscle soreness. Twelve healthy individuals were injected with NGF into right extensor carpi radialis brevis (ECRB) on Days 0 and 2 and with hypertonic saline on Day 4. Quantitative sensory and motor testing and assessment of M1 organization and function using transcranial magnetic stimulation were performed prior to injection on Days 0, 2, and 4 and again on Day 14. Pain and disability increased at Day 2 and increased further at Day 4. Reorganization of M1 was evident at Day 4 and was characterized by increased map excitability. These changes were accompanied by reduced intracortical inhibition and increased intracortical facilitation. Interhemispheric inhibition was reduced from the "affected" to the "unaffected" hemisphere on Day 4, and this was associated with increased pressure sensitivity in left ECRB. These data provide the first evidence of M1 adaptation in the transition to sustained muscle pain and have relevance for the development of therapies that seek to target M1 in musculoskeletal pain. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
    Cerebral Cortex 01/2015; DOI:10.1093/cercor/bhu319 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Musculoskeletal rehabilitative care and research have traditionally been guided by a structural pathology paradigm and directed their resources towards the structural, functional, and biological abnormalities located locally within the musculoskeletal system to understand and treat Musculoskeletal Disorders (MSD). However the structural pathology model does not adequately explain many of the clinical and experimental findings in subjects with chronic MSD and, more importantly, treatment guided by this paradigm fails to effectively treat many of these conditions. Increasing evidence reveals structural and functional changes within the Central Nervous System (CNS) of people with chronic MSD that appear to play a prominent role in the pathophysiology of these disorders. These neuroplastic changes are reflective of adaptive neurophysiological processes occurring as the result of altered afferent stimuli including nociceptive and neuropathic transmission to spinal, subcortical and cortical areas with MSD that are initially beneficial but may persist in a chronic state, may be part and parcel in the pathophysiology of the condition and the development and maintenance of chronic signs and symptoms. Neuroplastic changes within different areas of the CNS may help to explain the transition from acute to chronic conditions, sensory-motor findings, perceptual disturbances, why some individuals continue to experience pain when no structural cause can be discerned, and why some fail to respond to conservative interventions in subjects with chronic MSD. We argue that a change in paradigm is necessary that integrates CNS changes associated with chronic MSD and that these findings are highly relevant for the design and implementation of rehabilitative interventions for this population. Recent findings suggest that a change in model and approach is required in the rehabilitation of chronic MSD that integrate the findings of neuroplastic changes across the CNS and are targeted by rehabilitative interventions. Effects of current interventions may be mediated through peripheral and central changes but may not specifically address all underlying neuroplastic changes in the CNS potentially associated with chronic MSD. Novel approaches to address these neuroplastic changes show promise and require further investigation to improve efficacy of currents approaches.
    BMC Musculoskeletal Disorders 01/2015; 16(25):1. DOI:10.1186/s12891-015-0480-y · 1.90 Impact Factor