Article

Inhibition of Rho kinase by hydroxyfasudil attenuates brain edema after subarachnoid hemorrhage in rats.

Department of Physiology and Pharmacology, Loma Linda University, 11234 Anderson Street, Loma Linda, CA 92354, USA.
Neurochemistry International (Impact Factor: 2.66). 02/2012; 60(3):327-33. DOI: 10.1016/j.neuint.2011.12.014
Source: PubMed

ABSTRACT The blood-brain barrier (BBB) disruption and brain edema are important pathophysiologies of early brain injury after subarachnoid hemorrhage (SAH). This study is to evaluate whether Rho kinase (Rock) enhances BBB permeability via disruption of tight junction proteins during early brain injury. Adult male rats were assigned to five groups; Sham-operated, SAH treated with saline, a Rock inhibitor hydroxyfasudil (HF) (10 mg/kg) treatment at 0.5 h after SAH, HF treatment at 0.5 and 6 h (10 mg/kg, each) after SAH, and another Rock inhibitor Y27632 (10 mg/kg) treatment at 0.5 h after SAH. The perforation model of SAH was performed and neurological score and brain water content were evaluated 24 and 72 h after surgery. Evans blue extravasation, Rock activity assay, and western blotting analyses were evaluated 24 h after surgery. Treatment of HF significantly improved neurological scores 24 h after SAH. Single treatment with HF and Y27632, and two treatments with HF reduced brain water content in the ipsilateral hemisphere. HF reduced Evans blue extravasation in the ipsilateral hemisphere after SAH. Rock activity increased 24 h after SAH, and HF reversed the activity. SAH significantly decreased the levels of tight junction proteins, occludin and zonula occludens-1 (ZO-1), and HF preserved the levels of occluding and ZO-1 in ipsilateral hemisphere. In conclusion, HF attenuated BBB permeability after SAH, possibly by protection of tight junction proteins.

0 Bookmarks
 · 
125 Views
  • Journal of the Neurological Sciences. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early brain injury (EBI) which comprises of vasogenic edema and apoptotic cell death is an important component of subarachnoid hemorrhage (SAH) pathophysiology. This study evaluated whether Cannabinoid receptor type 2 (CB2R) agonist, JWH133, attenuates EBI after SAH and whether CB2R stimulation reduces pro-apoptotic caspase-3 via up-regulation of cAMP response element-binding protein (CREB)-Bcl-2 signaling pathway. Male Sprague Dawley rats (n=123) were subjected to SAH by endovascular perforation. Rats received vehicle or JWH133 at 1 hour after SAH. Neurological deficits and brain water content were evaluated at 24 hours after SAH. Western blot was performed to quantify phosphorylated CREB (pCREB), Bcl-2, and cleaved caspase-3 levels. Neuronal cell death was evaluated with terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling staining. Additionally, CREB siRNA was administered to manipulate the proposed pathway. JWH133 (1.0 mg/kg) improved neurological deficits and reduced brain water content in left hemisphere 24 hours after SAH. JWH133 significantly increased activated CREB (pCREB) and Bcl-2 levels and significantly decreased cleaved caspase-3 levels in left hemisphere 24 hours after SAH. CREB siRNA reversed the effects of treatment. TUNEL positive neurons in the cortex were reduced with JWH133 treatment. Thus, CB2R stimulation attenuated EBI after SAH possibly through activation of pCREB-Bcl-2 pathway.
    Experimental neurology. 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early brain injury (EBI), following subarachnoid hemorrhage (SAH), comprises blood-brain barrier (BBB) disruption and consequent edema formation. Peripheral leukocytes can infiltrate the injured brain, thereby aggravating BBB leakage and neuroinflammation. Thus, anti-inflammatory pharmacotherapies may ameliorate EBI and provide neuroprotection after SAH. Cannabinoid type 2 receptor (CB2R) agonism has been shown to reduce neuroinflammation; however, the precise protective mechanisms remain to be elucidated. This study aimed to evaluate whether the selective CB2R agonist, JWH133 can ameliorate EBI by reducing brain-infiltrated leukocytes after SAH. Adult male Sprague-Dawley rats were randomly assigned to the following groups: sham-operated, SAH with vehicle, SAH with JWH133 (1.0mg/kg), or SAH with a co-administration of JWH133 and selective CB2R antagonist SR144528 (3.0mg/kg). SAH was induced by endovascular perforation, and all reagents were administered 1h after surgery. Neurological deficits, brain water content, Evans blue dye extravasation, and Western blot assays were evaluated at 24h after surgery. JWH133 improved neurological scores and reduced brain water content; however, SR144528 reversed these treatment effects. JWH133 reduced Evans blue dye extravasation after SAH. Furthermore, JWH133 treatment significantly increased TGF-β1 expression and prevented an SAH-induced increase in E-selectin and myeloperoxidase. Lastly, SAH resulted in a decreased expression of the tight junction protein zonula occludens-1 (ZO-1); however, JWH133 treatment increased the ZO-1 expression. We suggest that CB2R stimulation attenuates neurological outcome and brain edema, by suppressing leukocyte infiltration into the brain through TGF-β1 up-regulation and E-selectin reduction, resulting in protection of the BBB after SAH.
    Journal of the neurological sciences 04/2014; · 2.32 Impact Factor

Full-text (2 Sources)

Download
45 Downloads
Available from
May 20, 2014