Article

Overexpression. of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato

CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus de Espinardo, P.O. Box 164, 30100 Espinardo-Murcia, Spain.
Journal of plant physiology (Impact Factor: 2.77). 03/2012; 169(5):459-68. DOI: 10.1016/j.jplph.2011.11.018
Source: PubMed

ABSTRACT One strategy to increase the level of drought and salinity tolerance is the transfer of genes codifying different types of proteins functionally related to macromolecules protection, such as group 2 of late embryogenesis abundant (LEA) proteins or dehydrins. The TAS14 dehydrin was isolated and characterized in tomato and its expression was induced by osmotic stress (NaCl and mannitol) and abscisic acid (ABA) [Godoy et al., Plant Mol Biol 1994;26:1921-1934], yet its function in drought and salinity tolerance of tomato remains elusive. In this study, transgenic tomato plants overexpressing tas14 gene under the control of the 35SCaMV promoter were generated to assess the function of tas14 gene in drought and salinity tolerance. The plants overexpressing tas14 gene achieved improved long-term drought and salinity tolerance without affecting plant growth under non-stress conditions. A mechanism of osmotic stress tolerance via osmotic potential reduction and solutes accumulation, such as sugars and K(+) is operating in tas14 overexpressing plants in drought conditions. A similar mechanism of osmotic stress tolerance was observed under salinity. Moreover, the overexpression of tas14 gene increased Na(+) accumulation only in adult leaves, whereas in young leaves, the accumulated solutes were K(+) and sugars, suggesting that plants overexpressing tas14 gene are able to distribute the Na(+) accumulation between young and adult leaves over a prolonged period in stressful conditions. Measurement of ABA showed that the action mechanism of tas14 gene is associated with an earlier and greater accumulation of ABA in leaves during short-term periods. A good feature for the application of this gene in improving drought and salt stress tolerance is the fact that its constitutive expression does not affect plant growth under non-stress conditions, and tolerance induced by overexpression of tas14 gene was observed at the different stress degrees applied to the long term.

Full-text

Available from: Francisco B. Flores, May 12, 2015
1 Follower
 · 
273 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Originating in the Andes, the tomato (Solanum lycopersicum L.) was imported to Europe in the 16th century. At present, it is an important crop plant cultivated all over the world, and its production and consumption continue to increase. This popular vegetable is known as a major source of important nutrients including lycopene, bcarotene, flavonoids and vitamin C as well as hydroxycinnamic acid derivatives. Since the discovery that lycopene has anti-oxidative, anti-cancer properties, interest in tomatoes has grown rapidly. The development of genetic engineering tools and plant biotechnology has opened great opportunities for engineering tomato plants. This review presents examples of successful tissue culture and genetically modified tomatoes which resistance to a range of environmental stresses improved, along with fruit quality. Additionally, a successful molecular farming model was established.
    Plant Cell Tissue and Organ Culture 11/2014; · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dehydrins (DHNs) play important roles in plant adaptation to abiotic stress. In this study, a cold-induced SK3-type DHN gene (ShDHN) isolated from wild tomato species Solanum habrochaites was characterized for its function in abiotic stress tolerance. ShDHN was constitutively expressed in root, leaf, stem, flower and fruit. ShDHN was continuously up-regulated during cold stress and showed higher expression level in the cold-tolerant S. habrochaites than in the susceptible S. lycopersicum. Moreover, ShDHN expression was also regulated by drought, salt, osmotic stress, and exogenous signaling molecules. Overexpression of ShDHN in cultivated tomato increased tolerance to cold and drought stresses and improved seedling growth under salt and osmotic stresses. Compared with the wild-type, the transgenic plants accumulated more proline, maintained higher enzymatic activities of superoxide dismutase and catalase, and suffered less membrane damage under cold and drought stresses. Moreover, the transgenic plants accumulated lower levels of H2O2 and O2− under cold stress, and had higher relative water contents and lower water loss rates under dehydration conditions. Furthermore, overexpression of ShDHN in tomato led to the up- or down-regulated expression of several genes involved in ROS scavenging and JA signaling pathway, including SOD1, GST, POD, LOX, PR1 and PR2. Taken together, these results indicate that ShDHN has pleiotropic effects on improving plant adaptation to abiotic stresses and that it possesses potential usefulness in genetic improvement of stress tolerance in tomato.
    Plant Science 12/2014; 231. DOI:10.1016/j.plantsci.2014.12.006 · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Originating in the Andes, the tomato (Solanum lycopersicum L.) was imported to Europe in the 16th century. At present, it is an important crop plant cultivated all over the world, and its production and consumption continue to increase. This popular vegetable is known as a major source of important nutrients including lycopene, bcarotene, flavonoids and vitamin C as well as hydroxycinnamic acid derivatives. Since the discovery that lycopene has anti-oxidative, anti-cancer properties, interest in tomatoes has grown rapidly. The development of genetic engineering tools and plant biotechnology has opened great opportunities for engineering tomato plants. This review presents examples of successful tissue culture and genetically modified tomatoes which resistance to a range of environmental stresses improved, along with fruit quality. Additionally, a successful molecular farming model was established.
    Plant Cell Tissue and Organ Culture 11/2014; · 2.61 Impact Factor