The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applications

Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases (Impact Factor: 3.26). 03/2012; 12(2):240-53. DOI: 10.1016/j.meegid.2011.12.009
Source: PubMed

ABSTRACT The protozoan Trypanosoma cruzi, its mammalian reservoirs, and vectors have existed in nature for millions of years. The human infection, named Chagas disease, is a major public health problem for Latin America. T. cruzi is genetically highly diverse and the understanding of the population structure of this parasite is critical because of the links to transmission cycles and disease. At present, T. cruzi is partitioned into six discrete typing units (DTUs), TcI-TcVI. Here we focus on the current status of taxonomy-related areas such as population structure, phylogeographical and eco-epidemiological features, and the correlation of DTU with natural and experimental infection. We also summarize methods for DTU genotyping, available for widespread use in endemic areas. For the immediate future multilocus sequence typing is likely to be the gold standard for population studies. We conclude that greater advances in our knowledge on pathogenic and epidemiological features of these parasites are expected in the coming decade through the comparative analysis of the genomes from isolates of various DTUs.

Download full-text


Available from: Michel Tibayrenc, Jun 29, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chagas disease affects around 8 million people worldwide and its treatment depends on only two nitroheterocyclic drugs, benznidazole (BZD) and nifurtimox (NFX). Both drugs have limited curative power in chronic phase of disease. Nifuroxazide (NF), a nitroheterocyclic drug, was used as lead to design a set of twenty one compounds in order to improve the anti-Trypanosoma cruzi activity. Lipinski's rules were considered in order to support drug-likeness designing. The set of N'-[(5-nitrofuran-2-yl) methylene] substituted hydrazides was assayed against three T. cruzi strains, which represent the discrete typing units more prevalent in human patients: Y (TcII), Silvio X10 cl1 (TcI), and Bug 2149 cl10 (TcV). All the derivatives, except one, showed enhanced trypanocidal activity against the three strains as compared to BZD. In the Y strain 62% of the compounds were more active than NFX. The most active compound was N'-((5-nitrofuran-2-yl) methylene)biphenyl-4-carbohydrazide (C20), which showed IC50 values of 1.17 ± 0.12 μM; 3.17 ± 0.32 μM; and 1.81 ± 0.18 μM for Y, Silvio X10 cl1, and Bug 2149 cl10 strains, respectively. Cytotoxicity assays with human fibroblast cells have demonstrated high selectivity indices for several compounds. Exploratory data analysis indicated that primarily topological, steric/geometric, and electronic properties have contributed to the discrimination of the set of investigated compounds. The findings can be helpful to drive the designing, and subsequently, the synthesis of additional promising drugs against Chagas disease. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
    European Journal of Medicinal Chemistry 04/2015; 96(96):330. DOI:10.1016/j.ejmech.2015.03.066 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosoma cruzi is the aetiological agent of Chagas disease, which affects approximately eight million people in the Americas. This parasite exhibits genetic variability, with at least six discrete typing units broadly distributed in the American continent. T. cruzi I (TcI) shows remarkable genetic diversity; a genotype linked to human infections and a domestic cycle of transmission have recently been identified, hence, this strain was named TcIDom. The aim of this work was to describe the spatiotemporal distribution of TcI subpopulations across humans, insect vectors and mammalian reservoirs in Colombia by means of molecular typing targeting the spliced leader intergenic region of mini-exon gene. We analysed 101 TcI isolates and observed a distribution of sylvatic TcI in 70% and TcIDom in 30%. In humans, the ratio was sylvatic TcI in 60% and TcIDom in 40%. In mammal reservoirs, the distribution corresponded to sylvatic TcI in 96% and TcIDom in 4%. Among insect vectors, sylvatic TcI was observed in 48% and TcIDom in 52%. In conclusion, the circulation of TcIDom is emerging in Colombia and this genotype is still adapting to the domestic cycle of transmission. The epidemiological and clinical implications of these findings are discussed herein.
    Memórias do Instituto Oswaldo Cruz 03/2015; 110(ahead):1-7. DOI:10.1590/0074-02760140402 · 1.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosoma cruzi strains from distinct geographic areas show differences in drug resistance and association between parasites genetic and treatment response has been observed. Considering that benznidazole (BZ) can reduce the parasite burden and tissues damage, even in not cured animals and individuals, the goal is to assess the drug response to BZ of T. cruzi II strains isolated from children of the Jequitinhonha Valley, state of Minas Gerais, Brazil, before treatment. Mice infected and treated with BZ in both phases of infection were compared with the untreated and evaluated by fresh blood examination, haemoculture, polymerase chain reaction, conventional (ELISA) and non-conventional (FC-ALTA) serologies. In mice treated in the acute phase, a significant decrease in parasitaemia was observed for all strains. Positive parasitological and/or serological tests in animals treated during the acute and chronic (95.1-100%) phases showed that most of the strains were BZ resistant. However, beneficial effect was demonstrated because significant reduction (p < 0.05%) and/or suppression of parasitaemia was observed in mice infected with all strains (acute phase), associated to reduction/elimination of inflammation and fibrosis for two/eight strains. BZ offered some benefit, even in not cured animals, what suggest that BZ use may be recommended at least for recent chronic infection of the studied region.
    Memórias do Instituto Oswaldo Cruz 01/2015; 110(1). DOI:10.1590/0074-02760140260 · 1.57 Impact Factor