Whole genomic analysis reveals the porcine origin of human G9P[19] rotavirus strains Mc323 and Mc345

Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan.
Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases (Impact Factor: 3.26). 03/2012; 12(2):471-7. DOI: 10.1016/j.meegid.2011.12.012
Source: PubMed

ABSTRACT The group A rotavirus (RVA) P[19] is a rare P-genotype of the RVA VP4 gene, reported so far in humans and pigs. Whole genomic analyses of P[19] strains are essential to study their origin and evolutionary patterns. To date, all the 11 genes of only two P[19] strains, RVA/Human-wt/IND/RMC321/1990/G9P[19] and RVA/Human-wt/IND/mani-97/2006/G9P[19], have been analyzed, providing evidence for their porcine origin. In the present study, the whole genomes of the first reported human P[19] strains, RVA/Human-tc/THA/Mc323/1989/G9P[19] and RVA/Human-tc/THA/Mc345/1989/G9P[19], were analyzed. Strains Mc323 and Mc345 exhibited a G9-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotype constellation. With the exception of the NSP5 gene, both the strains were closely related to each other. Most of the genes of Mc323 (VP2-4, VP6-7, NSP1-4 genes) and Mc345 (VP2-4, VP6-7 and NSP1-5 genes) appeared to be of porcine origin, whilst the exact origin of VP1 and NSP5 genes of Mc323 and VP1 gene of Mc345 could not be ascertained. Therefore, strains Mc323 and Mc345 were found to have a porcine RVA genetic backbone, and are likely of porcine origin. Taken together, our observations corroborated the hypothesis that P[19] strains might be derived from porcine RVAs, providing important insights into the origin of P[19] strains, and on interspecies transmission of RVAs.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We report here the whole genomic analyses of two G4P[6] (RVA/Human-wt/CHN/E931/2008/G4P[6], RVA/Human-wt/CHN/R1954/2013/G4P[6]), one G3P[6] (RVA/Human-wt/CHN/R946/2006/G3P[6]) and one G4P[8] (RVA/Human-wt/CHN/E2484/2011/G4P[8]) group A rotavirus (RVA) strains detected in sporadic cases of diarrhea in humans in the city of Wuhan, China. All the four strains displayed a Wa-like genotype constellation. Strains E931 and R1954 shared a G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1 constellation, whilst the 11 gene segments of strains R946 and E2484 were assigned to G3-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and G4-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 genotypes, respectively. Phylogenetically, the VP7 gene of R946, NSP3 gene of E931, and 10 of 11 gene segments of E2484 (except for VP7 gene) belonged to lineages of human RVAs. On the other hand, based on available data, it was difficult to ascertain porcine or human origin of VP3 genes of strains E931 and R946, and NSP2 genes of strains R946 and R1954. The remaining genes of E2484, E931, R946 and R1954 were close to those of porcine RVAs from China, and/or porcine-like human RVAs. Taken together, our observations suggested that strain R1954 might have been derived from porcine RVAs, whilst strains R946 and E931 might be reassortants possessing human RVA-like gene segments on a porcine RVA genetic backbone. Strain E2484 might be derived from reassortment events involving acquisition of a porcine-like VP7 gene by a Wa-like human RVA strain. The present study provided important insights into zoonotic transmission and complex reassortment events involving human and porcine RVAs, reiterating the significance of whole-genomic analysis of RVA strains. Copyright © 2015. Published by Elsevier B.V.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 04/2015; 33. DOI:10.1016/j.meegid.2015.04.010 · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Group A rotaviruses (RVAs) are leading causes of viral diarrhea in children and in the young of many animal species, particularly swine. In the current study, porcine RVAs were found in fecal specimens from symptomatic piglets on 4 farms in Brazil during the years of 2012-2013. Using RT-PCR, Sanger nucleotide sequencing, and phylogenetic analyses, the whole genomes of 12 Brazilian porcine RVA strains were analyzed. Specifically, the full-length open reading frame (ORF) sequences were determined for the NSP2-, NSP3-, and VP6-coding genes, and partial ORF sequences were determined for the VP1-, VP2-, VP3-, VP4-, VP7-, NSP1-, NSP4-, and NSP5/6-coding genes. The results indicate that all 12 strains had an overall porcine-RVA-like backbone with most segments being designated as genotype 1, with the exception of the VP6- and NSP1-coding genes, which were genotypes I5 and A8, respectively. These results add to our growing understanding of porcine RVA genetic diversity and will provide a platform for monitoring the role of animals as genetic reservoirs of emerging human RVAs strains. Copyright © 2015. Published by Elsevier B.V.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 03/2015; 32. DOI:10.1016/j.meegid.2015.03.016 · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During group A rotavirus (RVA) surveillance of pig farms in Japan, we detected three RVA strains (G4P[6], G5P[7], and G9P[23] genotypes), which showed super-short RNA patterns by polyacrylamide gel electrophoresis, in samples from a healthy eight-day-old pig and two pigs of seven and eight days old with diarrhea from three farms. Reverse transcription PCR and sequencing revealed that the full-length NSP5 gene of these strains contained 952 or 945 nucleotides, which is consistent with their super-short electropherotypes. Due to a lack of whole genome data on Japanese porcine RVAs, we performed whole genomic analyses of the three strains. The genomic segments of these RVA strains showed typical porcine RVA constellations, except for H2 NSP5 genotype, (G4,5,9-P[6,7,23]-I5-R1-C1-M1-A8-N1-T1-E1-H2 representing VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes). In phylogenetic analyses, these porcine RVA strains clustered with porcine and porcine-like human RVA strains and showed a typical porcine RVA backbone, except for the NSP5 gene; however, intra-genotype reassortment events among porcine and porcine-like human RVA strains were observed. The NSP5 gene segments of these strains were clustered within the H2b genotype with super-short human RVA strains. The H2 genotype has to date only been identified in human and lapine RVA strains. Thus, to our knowledge, this report presents the first case of H2 NSP5 genotype showing a super-short RNA pattern in porcine RVA. These data suggest the possibility of interspecies transmission between pigs and humans and imply that super-short porcine RVA strains possessing H2 genotype are circulating among both asymptomatic and diarrheic porcine populations in Japan. Copyright © 2015 Elsevier B.V. All rights reserved.
    Veterinary Microbiology 02/2015; 176(3-4). DOI:10.1016/j.vetmic.2015.02.002 · 2.73 Impact Factor