Article

Meta-analysis of overnight closed-loop randomized studies in children and adults with type 1 diabetes: the Cambridge cohort.

Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.
Journal of diabetes science and technology 11/2011; 5(6):1352-62. DOI: 10.1177/193229681100500606
Source: PubMed

ABSTRACT We reviewed the safety and efficacy of overnight closed-loop insulin delivery compared with conventional continuous subcutaneous insulin infusion (CSII) in two distinct age groups with type 1 diabetes mellitus (T1DM), young people aged 5 to 18 years and adults, combining data of previously published randomized studies.
We evaluated four randomized crossover studies in 17 children and adolescents [13.4 ± 3.6 years; mean ± standard deviation (SD)] and 24 adults (37.5 ± 9.1 years) on 45 closed-loop (intervention) and 45 CSII (control) visits. Each subject attended for two overnight study visits, using either closed-loop or conventional pump therapy, in random order. In each age group, studies were designed to mimic realistic likely scenarios. In the children and adolescent studies, closed loop was used following a standard evening meal and following 40 min of moderate-intensity exercise. In the adult studies, closed loop was commenced following a 60 g carbohydrate meal or a 100 g carbohydrate meal accompanied by alcohol. The primary outcome measure was time for which plasma glucose was within target range (3.91-8.0 mmol/liter).
Overnight closed loop increased the time in target plasma glucose in both young (from 40% to 60%, p = .002) and adults (from 50% to 76%, p < .001) compared with conventional CSII. Combined analysis showed an increase from 43% to 71% with closed loop (p < .001). Additionally, closed loop reduced the time spent below 3.91 mmol/liter and above 8.0 mmol/liter, from 4.1% to 2.1% (p = .01) and 33% to 20% (p = .03), respectively. Glycemic variability, as measured by the SD of plasma glucose, was lower during closed loop compared with CSII (1.5 versus 2.1 mmol/liter, p = .007).
Overnight closed loop may improve glycemic control and reduce nocturnal hypoglycemia in both young people and adults with T1DM.

Download full-text

Full-text

Available from: Simon R Heller, Sep 02, 2015
0 Followers
 · 
106 Views
 · 
41 Downloads
  • Source
    • "Vertical dashed lines indicate the threshold of significant hypoglycemia (3.0 mmol/l) and the target glucose range of 3.91 to 8.0 mmol/l. Values at the top denote the percentage of plasma glucose values within the respective glucose ranges (reproduced with permission from Kumareswaran et al. [60]). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 diabetes is one of the most common endocrine problems in childhood and adolescence, and remains a serious chronic disorder with increased morbidity and mortality, and reduced quality of life. Technological innovations positively affect the management of type 1 diabetes. Closed-loop insulin delivery (artificial pancreas) is a recent medical innovation, aiming to reduce the risk of hypoglycemia while achieving tight control of glucose. Characterized by real-time glucose-responsive insulin administration, closed-loop systems combine glucose-sensing and insulin-delivery components. In the most viable and researched configuration, a disposable sensor measures interstitial glucose levels, which are fed into a control algorithm controlling delivery of a rapid-acting insulin analog into the subcutaneous tissue by an insulin pump. Research progress builds on an increasing use of insulin pumps and availability of glucose monitors. We review the current status of insulin delivery, focusing on clinical evaluations of closed-loop systems. Future goals are outlined, and benefits and limitations of closed-loop therapy contrasted. The clinical utility of these systems is constrained by inaccuracies in glucose sensing, inter- and intra-patient variability, and delays due to absorption of insulin from the subcutaneous tissue, all of which are being gradually addressed.
    BMC Medicine 11/2011; 9(1):120. DOI:10.1186/1741-7015-9-120 · 7.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Integrated closed-loop control (CLC), combining continuous glucose monitoring (CGM) with insulin pump (continuous subcutaneous insulin infusion [CSII]), known as artificial pancreas, can help optimize glycemic control in diabetes. We present a fundamental modular concept for CLC design, illustrated by clinical studies involving 11 adolescents and 27 adults at the Universities of Virginia, Padova, and Montpellier. We tested two modular CLC constructs: standard control to range (sCTR), designed to augment pump plus CGM by preventing extreme glucose excursions; and enhanced control to range (eCTR), designed to truly optimize control within near normoglycemia of 3.9-10 mmol/L. The CLC system was fully integrated using automated data transfer CGM→algorithm→CSII. All studies used randomized crossover design comparing CSII versus CLC during identical 22-h hospitalizations including meals, overnight rest, and 30-min exercise. sCTR increased significantly the time in near normoglycemia from 61 to 74%, simultaneously reducing hypoglycemia 2.7-fold. eCTR improved mean blood glucose from 7.73 to 6.68 mmol/L without increasing hypoglycemia, achieved 97% in near normoglycemia and 77% in tight glycemic control, and reduced variability overnight. In conclusion, sCTR and eCTR represent sequential steps toward automated CLC, preventing extremes (sCTR) and further optimizing control (eCTR). This approach inspires compelling new concepts: modular assembly, sequential deployment, testing, and clinical acceptance of custom-built CLC systems tailored to individual patient needs.
    Diabetes 06/2012; 61(9):2230-7. DOI:10.2337/db11-1445 · 8.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE To test whether safe and effective glycemic control could be achieved in type 1 diabetes using a bihormonal bionic endocrine pancreas driven by a continuous glucose monitor in experiments lasting more than two days and including six high-carbohydrate meals and exercise as challenges to glycemic control. RESEARCH DESIGN AND METHODS Six subjects with type 1 diabetes and no endogenous insulin secretion participated in two 51-h experiments. Blood glucose was managed with a bionic endocrine pancreas controlling subcutaneous delivery of insulin and glucagon with insulin pumps. A partial meal-priming bolus of insulin (0.035 units/kg/meal, then 0.05 units/kg/meal in repeat experiments) was administered at the beginning of each meal (on average 78 ± 12 g of carbohydrates per meal were consumed). Plasma glucose (PG) control was evaluated with a reference quality measurement on venous blood every 15 min. RESULTS The overall mean PG was 158 mg/dL, with 68% of PG values in the range of 70–180 mg/dL. There were no significant differences in mean PG between larger and smaller meal-priming bolus experiments. Hypoglycemia (PG <70 mg/dL) was rare, with eight incidents during 576 h of closed-loop control (0.7% of total time). During 192 h of nighttime control, mean PG was 123 mg/dL, with 93% of PG values in the range of 70–180 mg/dL and only one episode of mild hypoglycemia (minimum PG 62 mg/dL). CONCLUSIONS A bihormonal bionic endocrine pancreas achieved excellent glycemic control with minimal hypoglycemia over the course of two days of continuous use despite high-carbohydrate meals and exercise. A trial testing a wearable version of the system under free-living conditions is justified.
    Diabetes care 08/2012; 35(11):2148-55. DOI:10.2337/dc12-0071 · 8.57 Impact Factor
Show more