Article

Heritability of prevalent vertebral fracture and volumetric bone mineral density and geometry at the lumbar spine in three generations of the Framingham study.

Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research (Impact Factor: 6.59). 04/2012; 27(4):954-8. DOI: 10.1002/jbmr.1537
Source: PubMed

ABSTRACT Genetic factors likely contribute to the risk for vertebral fractures; however, there are few studies on the genetic contributions to vertebral fracture (VFrx), vertebral volumetric bone mineral density (vBMD), and geometry. Also, the heritability (h(2)) for VFrx and its genetic correlation with phenotypes contributing to VFrx risk have not been established. This study aims to estimate the h(2) of vertebral fracture, vBMD, and cross-sectional area (CSA) derived from quantitative computed tomography (QCT) scans and to estimate the extent to which they share common genetic association in adults of European ancestry from three generations of Framingham Heart Study (FHS) families. Members of the FHS families were assessed for VFrx by lateral radiographs or QCT lateral scout views at 13 vertebral levels (T(4) to L(4)) using Genant's semiquantitative (SQ) scale (grades 0 to 3). Vertebral fracture was defined as having at least 25% reduction in height of any vertebra. We also analyzed QCT scans at the L(3) level for integral (In.BMD) and trabecular (Tb.BMD) vBMD and CSA. Heritability estimates were calculated, and bivariate genetic correlation analysis was performed, adjusting for various covariates. For VFrx, we analyzed 4099 individuals (148 VFrx cases) including 2082 women and 2017 men from three generations. Estimates of crude and multivariable-adjusted h(2) were 0.43 to 0.69 (p < 1.1 × 10(-2)). A total of 3333 individuals including 1737 men and 1596 women from two generations had VFrx status and QCT-derived vBMD and CSA information. Estimates of crude and multivariable-adjusted h(2) for vBMD and CSA ranged from 0.27 to 0.51. In a bivariate analysis, there was a moderate genetic correlation between VFrx and multivariable-adjusted In.BMD (-0.22) and Tb.BMD (-0.29). Our study suggests vertebral fracture, vertebral vBMD, and CSA in adults of European ancestry are heritable, underscoring the importance of further work to identify the specific variants underlying genetic susceptibility to vertebral fracture, bone density, and geometry.

0 Followers
 · 
141 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increased rates of osteoporotic fractures represent a worldwide phenomenon, which result from a progressing aging in the population around the world and creating socioeconomic problems. This review will focus mostly on human genetic studies identifying genomic regions, genes and mutations associated with osteoporosis (bone mineral density (BMD) and bone loss) and related fractures, which were published during 2011. Although multiple genome-wide association studies (GWAS) were performed to date, the genetic cause of osteoporosis and fractures has not yet been found, and only a small fraction of high heritability of bone mass was successfully explained. GWAS is a successful tool to initially define and prioritize specific chromosomal regions showing associations with the desired traits or diseases. Following the initial discovery and replication, targeted sequencing is needed in order to detect those rare variants which GWAS does not reveal by design. Recent GWAS findings for BMD included WNT16 and MEF2C. The role of bone morphogenetic proteins in fracture healing has been explored by several groups, and new single-nucleotide polymorphisms present in genes such as NOGGIN and SMAD6 were found to be associated with a greater risk of fracture non-union. Finding new candidate genes, and mutations associated with BMD and fractures, also provided new biological connections. Thus, candidates for molecular link between bone metabolism and lactation (for example, RAP1A gene), as well as possible pleiotropic effects for bone and muscle (ACTN3 gene) were suggested. The focus of contemporary studies seems to move toward whole-genome sequencing, epigenetic and functional genomics strategies to find causal variants for osteoporosis.
    08/2012; 1:114. DOI:10.1038/bonekey.2012.114
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fractures applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged > 55 years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey–Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey–Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han–Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p < 5 × 10− 8. In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p = 4.6 × 10− 8. However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% CI: 0.98–1.14; p = 0.17), displaying high degree of heterogeneity (I2 = 57%; Qhet p = 0.0006). Under Han–Eskin alternative random effects model the summary effect was significant (p = 0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size > 1.25) may still be consistent with an effect size < 1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures.
    Bone 02/2014; 59:20-7. · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteoporotic vertebral fractures are an increasingly active area of research. Oftentimes assessments are performed by software-assisted quantitative morphometry. Here, we will discuss multi-functionality of these data for research purposes. A team of trained research assistants processed lateral spine radiographs from the population-based Rotterdam Study with SpineAnalyzer(®) software (Optasia Medical Ltd, Cheadle, UK). Next, the raw coordinate data of the two upper corners of Th5 and the two lower corners of Th12 were extracted to calculate the Cobb's kyphosis angle. In addition, two readers performed independent manual measurements of the Cobb's kyphosis angle between Th5 and Th12 for a sample (n=99). The mean kyphosis angle and its standard deviation were 53° and 10° for the SpineAnalyzer(®) software measurements and 54° and 12° by manual measurements, respectively. The Pearson's correlation coefficient was 0.65 [95% confidence interval (CI): 0.53-0.75; P=2×10(-13)]. There was a substantial intraclass correlation with a coefficient of 0.64 (95% CI: 0.51-0.74). The mean difference between methods was 1° (95% CI: -2°-4°), with 95% limits of agreement of -20°-17° and there were no systematic biases. In conclusion, vertebral fracture morphometry data can be used to derive the Cobb's kyphosis angle. Even more quantitative measures could be derived from the raw data, such as vertebral wedging, intervertebral disc space, spondylolisthesis and the lordosis angle. These measures may be of interest for research into musculoskeletal disorders such as osteoporosis, degenerative disease or Scheuermann's disease. Large-scale studies may benefit from efficient capture of multiple quantitative measures in the spine.
    10/2013; 3(5):249-255. DOI:10.3978/j.issn.2223-4292.2013.09.03

Full-text (2 Sources)

Download
18 Downloads
Available from
May 22, 2014