Article

Vascular smooth muscle cells: Isolation, culture, and characterization

Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center, College of Medicine, College Station, TX, USA.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2012; 843:169-76. DOI: 10.1007/978-1-61779-523-7_16
Source: PubMed

ABSTRACT Vascular smooth muscle cells (VSMCs) are the cellular components of the normal blood vessel wall that provides structural integrity and regulates the diameter by contracting and relaxing dynamically in response to vasoactive stimuli. The differentiated state of the VSMC is characterized by specific contractile proteins, ion channels, and cell surface receptors that regulate the contractile process and are thus termed contractile cells. In addition to these normal functions, in response to injury or during development, VSMCs are responsible for the synthesis of extracellular matrix proteins, become migratory and proliferate. This phenotype has been termed synthetic cells. To better understand the mechanisms regulating these and other processes, scientists have depended on cultured cells that can be manipulated in vitro. In this chapter, we will discuss in detail the explant method for isolation of VSMC and will compare it to the enzymatic digestion method. We will also briefly describe methods for characterizing the resulting cells.

3 Followers
 · 
306 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pericytes are critical cellular components of the microvasculature that play a major role in vascular development and pathologies, yet their study has been hindered by lack of a standardized method for their isolation and growth. Here we report a method for culturing human pericytes from a readily available tissue source, placenta, and provide a thorough characterization of resultant cell populations. We developed an optimized protocol for obtaining pericytes by outgrowth from microvessel fragments recovered after enzymatic digestion of human placental tissue. We characterized outgrowth populations by immunostaining, by gene expression analysis, and by functional evaluation of cells implanted in vivo. Our approach yields human pericytes that may be serially expanded in culture and that uniformly express the cellular markers NG2, CD90, CD146, alpha-SMA, and PDGFR-beta, but lack markers of smooth muscle cells, endothelial cells, and leukocytes. When co-implanted with human endothelial cells into C.B-17 SCID/bg mice, human pericytes invest and stabilize developing human endothelial cell-lined microvessels. We conclude that our method for culturing pericytes from human placenta results in the expansion of functional pericytes that may be used to study a variety of questions related to vascular biology.
    Microcirculation (New York, N.Y.: 1994) 07/2010; 17(5):367-80. DOI:10.1111/j.1549-8719.2010.00038.x · 2.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A growing body of evidence indicates that glucagon-like peptide-1 (GLP-1) agonists or dipeptidyl peptidase-4 (DPP-4) inhibitors play an important role in modulating oxidant stress in vascular beds. However, the underlying mechanism of this process remains unclear. In recent studies, we observed an increase in GLP-1 receptor (GLP-1R) expression in the aorta of LOX-1 knock-out mice. Since LOX-1 is a pivotal regulator of reactive oxygen species (ROS), we conducted studies to identify relationship between LOX-1, ROS and GLP-1 agonism or DPP-4 antagonism. We observed a sustained decrease in GLP-1R expression in human vascular smooth muscle cells (VSMCs) treated with ox-LDL. When VSMCs were treated with different concentration of liraglutide (a GLP-1 agonist) or NVPDPP728 (a DPP-4 inhibitor), expression of ROS decreased compared with ox-LDL alone treatment. To further prove that LOX-1 plays a pivotal role in ROS and GLP-1R expression, we treated VSMCs with LOX-1 antibody or transfected cells with human LOX-1 cDNA. The inhibitory effect of ox-LDL on GLP-1R expression was reversed with anti-LOX-1 antibody treatment, while the inhibitory effect of liraglutide and NVPDPP728 on ROS generation was attenuated when cells were transfected with LOX-1 cDNA. Our results suggest that LOX-1 may play a bridging role in GLP-1 activation and ROS interaction.
    Biochemical and Biophysical Research Communications 06/2013; 437(1). DOI:10.1016/j.bbrc.2013.06.035 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen has pleiotropic effects on the cardiovascular diseases, yet the underlying mechanisms remain incompletely understood. Cholesterol efflux is a key mechanism through which to prevent foam cell formation and the development of atherosclerosis. Recent studies highlight the role of vascular smooth muscle cell (VSMC)-derived foam cells in atherogenesis. However, it remains unclear whether estrogen promotes cholesterol efflux from VSMCs and inhibits VSMC-derived foam cell formation. In the present study, we demonstrated that 17β-estradiol (E2) markedly enhanced cholesterol efflux to apolipoprotein (apo)A-1 and high-density lipoprotein (HDL) and attenuated oxidized low-density lipoprotein (ox-LDL) induced cholesteryl ester accumulation in VSMCs, which was associated with an increase in the expression of ATP-binding cassette transporters ABCA1 and ABCG1. The upregulation of ABCA1 and ABCG1 expression by E2 resulted from liver X receptor (LXR)α activation, which was confirmed by the prevention of the expression of ABCA1 and ABCG1 after inhibition of LXRα with a pharmacological inhibitor or small interfering RNA (siRNA). Furthermore, E2 increased LXRα, ABCA1 and ABCG1 expression in VSMCs via the estrogen receptor (ER), and the involvement of ERβ was confirmed by the use of selective ERα or ERβ antagonists (MPP and PHTPP) and agonists (PPT and DPN). These findings suggest that E2 promotes cholesterol efflux from VSMCs and reduces VSMC-derived foam cell formation via ERβ- and LXRα-dependent upregulation of ABCA1 and ABCG1 and provide novel insights into the anti-atherogenic properties of estrogen.
    International Journal of Molecular Medicine 01/2014; 33(3). DOI:10.3892/ijmm.2014.1619 · 1.88 Impact Factor
Show more