Deciphering cell wall integrity signalling in Aspergillus fumigatus: identification and functional characterization of cell wall stress sensors and relevant Rho GTPases.

Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, Pettenkoferstraße 9a, Munich, Germany.
Molecular Microbiology (Impact Factor: 4.96). 02/2012; 83(3):506-19. DOI: 10.1111/j.1365-2958.2011.07946.x
Source: PubMed

ABSTRACT The fungal cell wall, a conserved and highly dynamic structure, is essential for virulence and viability of fungal pathogens and is an important antifungal drug target. The cell wall integrity (CWI) signalling pathway regulates shape and biosynthesis of the cell wall. In this work we identified, localized and functionally characterized four putative CWI stress sensors of Aspergillus fumigatus, an airborne opportunistic human pathogen and the cause of invasive aspergillosis. We show that Wsc1 is specifically required for resistance to echinocandin antifungals. MidA is specifically required for elevated temperature tolerance and resistance to the cell wall perturbing agents congo red and calcofluor white. Wsc1, Wsc3 and MidA additionally have overlapping functions and are redundantly required for radial growth and conidiation. We have also analysed the roles of three Rho GTPases that have been implicated in CWI signalling in other fungi. We show that Rho1 is essential and that conditional downregulation of rho1 or deletion of rho2 or rho4 results in severely impaired CWI. Our data indicate significant functional differences between the CWI stress sensors of yeasts and moulds.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Rho GTPases, acting as molecular switches, are involved in the regulation of diverse cellular functions. Rho GTPase activating proteins (Rho GAPs) function as negative regulators of Rho GTPases and are required for a variety of signaling processes in cell development. But the mechanisms underlying Rho GAPs in Rho-mediated signaling pathways in fungi are still elusive. There are eight RhoGAP domain-containing genes annotated in the Magnaporthe oryzae genome. To understand the function of these RhoGAP genes, we generated knockout mutants of each of the RhoGAP genes through a homologous recombination-based method. Phenotypic analysis showed that growth rate of aerial hyphae of the Molrg1 deletion mutant decreased dramatically. The ΔMolrg1 mutant showed significantly reduced conidiation and appressorium formation by germ tubes. Moreover, it lost pathogenicity completely. Deletion of another Rho GAP (MoRga1) resulted in high percentage of larger or gherkin-shaped conidia and slight decrease in conidiation. Appressorial formation of the ΔMoRga1 mutant was delayed significantly on hydrophobic surface, while the development of mycelial growth and pathogenicity in plants was not affected. Confocal fluorescence microscopy imaging showed that MoRga1-GFP localizes to septal pore of the conidium, and this localization pattern requires both LIM and RhoGAP domains. Furthermore, either deleting the LIM or RhoGAP domain or introducing an inactivating R1032A mutation in the RhoGAP domain of MoRga1 caused similar defects as the Morga1 deletion mutant in terms of conidial morphology and appressorial formation, suggesting that MoRga1 is a stage-specific regulator of conidial differentiation by regulating some specific Rho GTPases. In this regard, MoRga1 and MoLrg1 physically interacted with both MoRac1-CA and MoCdc42-CA in the yeast two-hybrid and pull-down assays, suggesting that the actions of these two GAPs are involved in MoRac1 and MoCdc42 pathways. On the other hand, six other putative Rho GAPs (MoRga2 to MoRga7) were dispensable for conidiation, vegetative growth, appressorial formation and pathogenicity, suggesting that these Rho GAPs function redundantly during fungal development. Taking together, Rho GAP genes play important roles in M. oryzae development and infectious processes through coordination and modulation of Rho GTPases.
    Fungal Genetics and Biology 04/2014; · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: GPI-anchoring is a universal and critical post-translational protein modification in eukaryotes. In fungi, many cell wall proteins are GPI-anchored, and disruption of GPI-anchored proteins impairs cell wall integrity. After being synthesized and attached to target proteins, GPI anchors undergo modification on lipid moieties. In spite of its importance for GPI-anchored protein functions, our current knowledge of GPI lipid remodeling in pathogenic fungi is limited. In this study, we characterized the role of a putative GPI lipid remodeling protein, designated PerA, in the human pathogenic fungus Aspergillus fumigatus. PerA localizes to the endoplasmic reticulum and loss of PerA leads to striking defects in cell wall integrity. A perA null mutant has decreased conidia production, increased susceptibility to triazole antifungal drugs, and is avirulent in a murine model of invasive pulmonary aspergillosis. Interestingly, loss of PerA increases exposure of β-glucan and chitin content on the hyphal cell surface, but diminished TNF production by bone marrow derived macrophages relative to wild type. Given the structural specificity of fungal GPI-anchors, which is different from humans, understanding GPI lipid remodeling and PerA function in A. fumigatus is a promising research direction to uncover a new fungal specific antifungal drug target.
    Molecular Microbiology 04/2014; · 4.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rho G-proteins and phosphatidylinositol phosphates, which are important for exocytosis, endocytosis and cytoskeleton organization, are key regulators of polarized growth in a range of organisms. The aim of the present brief review is to highlight recent findings and their implications with respect to the functions and interplay between Rho G-proteins and phosphatidylinositol phosphates in highly polarized fungal filamentous growth.
    Biochemical Society Transactions 02/2014; 42(1):206-11. · 2.59 Impact Factor

Similar Publications