Article

Deciphering cell wall integrity signalling in Aspergillus fumigatus: Identification and functional characterization of cell wall stress sensors and relevant Rho GTPases

Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, Pettenkoferstraße 9a, Munich, Germany.
Molecular Microbiology (Impact Factor: 5.03). 02/2012; 83(3):506-19. DOI: 10.1111/j.1365-2958.2011.07946.x
Source: PubMed

ABSTRACT The fungal cell wall, a conserved and highly dynamic structure, is essential for virulence and viability of fungal pathogens and is an important antifungal drug target. The cell wall integrity (CWI) signalling pathway regulates shape and biosynthesis of the cell wall. In this work we identified, localized and functionally characterized four putative CWI stress sensors of Aspergillus fumigatus, an airborne opportunistic human pathogen and the cause of invasive aspergillosis. We show that Wsc1 is specifically required for resistance to echinocandin antifungals. MidA is specifically required for elevated temperature tolerance and resistance to the cell wall perturbing agents congo red and calcofluor white. Wsc1, Wsc3 and MidA additionally have overlapping functions and are redundantly required for radial growth and conidiation. We have also analysed the roles of three Rho GTPases that have been implicated in CWI signalling in other fungi. We show that Rho1 is essential and that conditional downregulation of rho1 or deletion of rho2 or rho4 results in severely impaired CWI. Our data indicate significant functional differences between the CWI stress sensors of yeasts and moulds.

0 Followers
 · 
126 Views
    • "Tscherter and Dreyfuss (1982) " Catechol-sulfate " echinocandins (FR901379, FR901381-82, FR190293, FR209602-4, FR220897, FR220899, FR227673) Coleophoma empetri Iwamoto et al. (1994); Kanasaki et al. (2006a, b, c) Coleophoma crateriformis Chalara sp. Tolypocladium parasiticum Cryptocandin Cryptosporiopsis quercina Strobel et al. (1999) Appl Microbiol Biotechnol (2013) 97:3267–3284 3269 moulds (Dichtl et al. 2012 "
    [Show abstract] [Hide abstract]
    ABSTRACT: The first echinocandin-type antimycotic (echinocandin B) was discovered in the 1970s. It was followed by the isolation of more than 20 natural echinocandins. These cyclic lipo-hexapeptides are biosynthesized on non-ribosomal peptide synthase complexes by different ascomycota fungi. They have a unique mechanism of action; as non-competitive inhibitors of β-1,3-glucan synthase complex they target the fungal cell wall. Results of the structure-activity relationship experiments let us develop semisynthetic derivatives with improved properties. Three cyclic lipohiexapeptides (caspofungin, micafungin and anidulafungin) are currently approved for use in clinics. As they show good fungicidal (Candida spp.) or fungistatic (Aspergillus spp.) activity against the most important human pathogenic fungi including azole-resistant strains, they are an important addition to the antifungal armamentarium. Some evidence of acquired resistance against echinocandins has been detected among Candida glabrata strains in recent years, which enhanced the importance of data collected on the mechanism of acquired resistance developing against the echinocandins. In this review, we show the structural diversity of natural echinocandins, and we summarize the emerging data on their mode of action, biosynthesis and industrial production. Their clinical significance as well as the mechanism of natural and acquired resistance is also discussed.
    Applied Microbiology and Biotechnology 03/2013; 97(8). DOI:10.1007/s00253-013-4761-9 · 3.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aspergillus nidulans var. roseus ATCC 58397 is an echinocandin B (ECB) producer ascomycete with great industrial importance. As demonstrated by ECB/caspofungin sensitivity assays, A. nidulans var. roseus does not possess any inherent resistance to echinocandins, and its tolerance to these lipopeptide antimycotics are even lower than those of the non-producer A. nidulans FGSC A4 strain. Under ECB producing conditions or ECB exposures, A. nidulans var. roseus induced its ECB tolerance via up-regulating elements of the chitin biosynthetic machinery and, hence, through changing dynamically the composition of its own cell wall. Importantly, although the specific β-1,3-glucan synthase activity was elevated, these changes reduced the β-glucan content of hyphae considerably, but the expression of fksA, encoding the catalytic subunit of β-1,3-glucan synthase, the putative target of echinocandins in the aspergilli, was not affected. These data suggest that compensatory chitin biosynthesis is the centerpiece of the induced ECB tolerance of A. nidulans var. roseus. It is important to note that the induced tolerance to ECB (although resulted in paradoxical growth at higher ECB concentrations) was accompanied with reduced growth rate and, under certain conditions, even sensitized the fungus to other stress-generating agents like SDS. We hypothesize that although ECB-resistant mutants may arise in vivo in A. nidulans var. roseus cultures, their widespread propagation is severely restricted by the disadvantageous physiological effects of such mutations.
    Applied Microbiology and Biotechnology 05/2012; 95(1):113-22. DOI:10.1007/s00253-012-4027-y · 3.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rho proteins are key regulators of cellular morphogenesis, but their function in filamentous fungi is poorly understood. By generating conditional rho-1 mutants, we dissected the function of the essential GTPase RHO1 in cell polarization and maintenance of cell wall integrity in Neurospora crassa. We identified NCU00668/RGF1 as RHO1-specific exchange factor, which controls actin organization and the cell wall integrity MAK1 MAP kinase pathway through the direct interaction of active RHO1 with the formin BNI1 and PKC1 respectively. The activity of RGF1 is controlled by an intramolecular interaction of its DEP and GEF domains that blocks the activation of the GTPase. Moreover, the N-terminal region including the DEP domain of RGF1 interacts with the plasma membrane sensor NCU06910/WSC1, potentially to activate the cell wall integrity pathway. RHO1 also functions as regulatory subunit of the glucan synthase. N. crassa possesses a second GTPase, RHO2, that is highly homologous to RHO1. RHO2 is of minor importance for growth and does not interact with BNI1. Conditional rho-1;rho-2 double mutants display strong synthetic growth and cell polarity defects. We show that RHO2 does not regulate glucan synthase activity and the actin cytoskeleton, but physically interacts with PKC1 to regulate the cell wall integrity pathway.
    Molecular Microbiology 06/2012; 85(4):716-33. DOI:10.1111/j.1365-2958.2012.08133.x · 5.03 Impact Factor
Show more

Preview

Download
2 Downloads