Both TLR2 and TRIF Contribute to Interferon-β Production during Listeria Infection

University of São Paulo, Brazil
PLoS ONE (Impact Factor: 3.23). 03/2012; 7(3):e33299. DOI: 10.1371/journal.pone.0033299
Source: PubMed


Synthesis of interferon-β (IFN-β) is an innate response to cytoplasmic infection with bacterial pathogens. Our recent studies showed that Listeria monocytogenes limits immune detection and IFN-β synthesis via deacetylation of its peptidoglycan, which renders the bacterium resistant to lysozyme degradation. Here, we examined signaling requirements for the massive IFN-β production resulting from the infection of murine macrophages with a mutant strain of L. monocytogenes, ΔpgdA, which is unable to modify its peptidoglycan. We report the identification of unconventional signaling pathways to the IFN-β gene, requiring TLR2 and bacterial internalization. Induction of IFN-β was independent of the Mal/TIRAP adaptor protein but required TRIF and the transcription factors IRF3 and IRF7. These pathways were stimulated to a lesser degree by wild-type L. monocytogenes. They operated in both resident and inflammatory macrophages derived from the peritoneal cavity, but not in bone marrow-derived macrophages. The novelty of our findings thus lies in the first description of TLR2 and TRIF as two critical components leading to the induction of the IFN-β gene and in uncovering that individual macrophage populations adopt different strategies to link pathogen recognition signals to IFN-β gene expression.

Download full-text


Available from: Thomas Decker,
  • Source
    • "“Late-phase” genes include IFNβ, multiple subtypes of IFNα, and several ISGs (28, 29). The fact that killed and Δhly L. monocytogenes strains fail to induce this late-phase IFN-dominated response supports the interpretation that products from bacteria replicating within the BMM cytosol stimulate cytosolic pathogen recognition receptors (PRR), though TLR stimulation can augment the induction of type I IFNs during L. monocytogenes infection (29, 30). There has been considerable interest in identifying the cytosolic PRRs responsible for type I IFN production during L. monocytogenes infection. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Type I interferons (IFNs) were first described for their ability to protect the host from viral infections and may also have beneficial effects under specific conditions within some bacterial infections. Yet, these pleiotropic cytokines are now known to exacerbate infections by numerous life-threatening bacteria, including the intracellular pathogens Listeria monocytogenes and Mycobacterium tuberculosis. The evidence that such detrimental effects occur during bacterial infections in both animals and humans argues for selective pressure. In this review, we summarize the evidence demonstrating a pro-bacterial role for type I IFNs and discuss possible mechanisms that have been proposed to explain such effects. The theme emerges that type I IFNs act to suppress myeloid cell immune responses. The evolutionary conservation of such anti-inflammatory effects, particularly in the context of infections, suggests they may be important for limiting chronic inflammation. Given the effectiveness of type I IFNs in treatment of certain autoimmune diseases, their production may also act to raise the threshold for activation of immune responses to self-antigens.
    Frontiers in Immunology 09/2014; 5:431. DOI:10.3389/fimmu.2014.00431
  • Source
    • "Furthermore, a potential regulatory role may be played by LPS with regards to competition for TLR4 and induction of IL-10 in a mechanism that has yet to be elucidated. Experimental models of inflammatory bowel disease (IBD) have helped to identify genetic factors that reveal host susceptibilities to impairment of gut immune homeostasis (38). However, the products and components of the microbiota, such as LPS, may play a larger role in setting the balance of organisms in a given microbiota and the maintenance of the local immune environment (6, 56). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate immune mechanisms that follow early recognition of microbes influence the nature and magnitude of subsequent adaptive immune responses. Early detection of microbes depends on pattern recognition receptors that sense pathogen-associated molecular patterns or microbial-associated molecular patterns (PAMPS or MAMPs, respectively). The bacterial envelope contains MAMPs that include membrane proteins, lipopeptides, glycopolymers, and other pro-inflammatory molecules. Bacteria are selected by environmental pressures resulting in quantitative or qualitative changes in their envelope structures that often promote evasion of host immune responses and therefore, infection. However, recent studies have shown that slight, adaptive changes in MAMPs on the bacterial cell wall may result in their ability to induce the secretion not only of pro-inflammatory cytokines but also of anti-inflammatory cytokines. This effect can fine-tune the subsequent response to microbes expressing these MAMPs and lead to the establishment of a commensal state within the host rather than infectious disease. In this review, we will examine the plasticity of Toll-like receptor (TLR) 2 signaling as evidence of evolving MAMPs, using the better-characterized TLR4 as a template. We will review the role of differential dimerization of TLR2 and the arrangement of signaling complexes and co-receptors in determining the capacity of the host to recognize an array of TLR2 ligands and generate different immune responses to these ligands. Last, we will assess briefly how this plasticity may expand the array of interactions between microbes and immune systems beyond the traditional disease-causing paradigm.
    Frontiers in Immunology 10/2013; 4:347. DOI:10.3389/fimmu.2013.00347
  • Source
    • "High levels of interferon-β (IFN-β) have been demonstrated to be associated with host susceptibility to Listeria infection and mice deficient for IFN-β signalling components such as the type I interferon receptor (Ifnar) gene or the interferon regulatory factor 3 (Irf3) gene are more resistant to lethal L. monocytogenes infection [20-25]. Furthermore, variations in the induction of IFN-β responses in the host by different Listeria strains have been linked with differences in strain virulence [26-29]. To analyse and compare kinetics of Ifnb1 induction after intragastric infection challenge with Lmo-InlA-mur-lux and Lmo-EGD-lux we developed a dual luciferase detection model. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The bacterial surface protein internalin (InlA) is a major virulence factor of the food-born pathogen Listeria monocytogenes. It plays a critical role in the bacteria crossing the host intestinal barrier by a species-specific interaction with the cell adhesion molecule E-cadherin. In mice, the interaction of InlA with murine E-cadherin is impaired due to sequence-specific binding incompatibilities. We have previously used the approach of ‘murinisation’ to establish an oral listeriosis infection model in mice by exchanging two amino acid residues in InlA. This dramatically increases binding to mouse E-cadherin. In the present study, we have used bioluminescent murinised and non-murinised Listeria strains to examine the spatiotemporal dissemination of Listeria in four diverse mouse genetic backgrounds after oral inoculation. Results The murinised Listeria monocytogenes strain showed enhanced invasiveness and induced more severe infections in all four investigated mouse inbred strains compared to the non-murinised Listeria strain. We identified C57BL/6J mice as being most resistant to orally acquired listeriosis whereas C3HeB/FeJ, A/J and BALB/cJ mice were found to be most susceptible to infection. This was reflected in faster kinetics of Listeria dissemination, higher bacterial loads in internal organs, and elevated serum levels of IL-6, IFN-γ, TNF-α and CCL2 in the susceptible strains as compared to the resistant C57BL/6J strain. Importantly, murinisation of InlA did not cause enhanced invasion of Listeria monocytogenes into the brain. Conclusion Murinised Listeria are able to efficiently cross the intestinal barrier in mice from diverse genetic backgrounds. However, expression of murinized InlA does not enhance listerial brain invasion suggesting that crossing of the blood brain barrier and crossing of the intestinal epithelium are achieved by Listeria monocytogenes through different molecular mechanisms.
    BMC Microbiology 04/2013; 13(1):90. DOI:10.1186/1471-2180-13-90 · 2.73 Impact Factor
Show more