Article

Merlin/NF2 regulates angiogenesis in schwannomas through a Rac1/semaphorin 3F-dependent mechanism.

The Steele Lab of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
Neoplasia (New York, N.Y.) (Impact Factor: 5.4). 02/2012; 14(2):84-94.
Source: PubMed

ABSTRACT Neurofibromatosis type 2 (NF2) is an autosomal-dominant multiple neoplasia syndrome that results from mutations in the NF2 tumor suppressor gene. Patients with NF2 develop hallmark schwannomas that require surgery or radiation, both of which have significant adverse effects. Recent studies have indicated that the tumor microenvironment-in particular, tumor blood vessels-of schwannomas may be an important therapeutic target. Furthermore, although much has been done to understand how merlin, the NF2 gene product, functions as a tumor suppressor gene in schwannoma cells, the functional role of merlin in the tumor microenvironment and the mechanism(s) by which merlin regulates angiogenesis to support schwannoma growth is largely unexplored. Here we report that the expression of semaphorin 3F (SEMA3F) was specifically downregulated in schwannoma cells lacking merlin/NF2. When we reintroduced SEMA3F in schwannoma cells, we observed normalized tumor blood vessels, reduced tumor burden, and extended survival in nude mice bearing merlin-deficient brain tumors. Next, using chemical inhibitors and gene knockdown with RNA interference, we found that merlin regulated expression of SEMA3F through Rho GTPase family member Rac1. This study shows that, in addition to the tumor-suppressing activity of merlin, it also functions to maintain physiological angiogenesis in the nervous system by regulating antiangiogenic factors such as SEMA3F. Restoring the relative balance of proangiogenic and antiangiogenic factors, such as increases in SEMA3F, in schwannoma microenvironment may represent a novel strategy to alleviate the clinical symptoms of NF2-related schwannomas.

0 Bookmarks
 · 
110 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Semaphorins are membrane-bound or diffusible factors that regulate key cellular functions and are involved in cell-cell communication. Most of the effects of semaphorins are mediated by plexins. Work over the past decade has revealed crucial functions of the semaphorin-plexin system in mammalian physiology. It has also become clear that semaphorins and plexins have important roles in many pathophysiological processes, including cancer, immunological diseases and bone disorders, and that they represent novel targets for drugs to prevent or treat various diseases. This Review summarizes the functions of the mammalian semaphorin-plexin system as well as its role in diseases and discusses emerging strategies to pharmacologically target semaphorin-plexin signalling.
    dressNature Reviews Drug Discovery 08/2014; 13(8):603-21. DOI:10.1038/nrd4337 · 37.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During organogenesis, patterning is primarily achieved by the combined actions of morphogens. Among these, semaphorins represent a general system for establishing the appropriate wiring architecture of biological nets. Originally discovered as evolutionarily conserved steering molecules for developing axons, subsequent studies on semaphorins expanded their functions to the cardiovascular and immune systems. Semaphorins participate in cardiac organogenesis and control physiological vasculogenesis and angiogenesis, which result from a balance between pro- and anti-angiogenic signals. These signals are altered in several diseases. In this review, we discuss the role of semaphorins in vascular biology, emphasizing the mechanisms by which these molecules control vascular patterning and lymphangiogenesis, as well as in genetically inherited and degenerative vascular diseases.
    Trends in Molecular Medicine 08/2014; 10(2):1-10. DOI:10.1016/j.molmed.2014.07.005 · 10.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract: The semaphorins, discovered over 20 years ago, are a large family of secreted or transmembrane and glycophosphatidylinositol-anchored proteins initially identified as axon guidance molecules crucial for the development of the nervous system. It has now been established that they also play important roles in organ development and function, especially involving the immune, respiratory, and cardiovascular systems, and in pathological disorders, including cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, and this has created complexities in our understanding of these systems. Semaphorins may affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by interacting with and influencing cells from the micro-environment and vasculature. Mechanistically, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuropilins also act as co-receptors for several growth factors and enhance their signaling activities, while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling that may be clinically relevant.
    OncoTargets and Therapy 09/2014; 7:1663—1687. DOI:10.2147/OTT.S37744 · 1.34 Impact Factor

Preview

Download
1 Download
Available from