Article

Merlin/NF2 Regulates Angiogenesis in Schwannomas through a Rac1/Semaphorin 3F-Dependent Mechanism 1

The Steele Lab of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
Neoplasia (New York, N.Y.) (Impact Factor: 5.4). 02/2012; 14(2):84-94. DOI: 10.1593/neo.111600
Source: PubMed

ABSTRACT Neurofibromatosis type 2 (NF2) is an autosomal-dominant multiple neoplasia syndrome that results from mutations in the NF2 tumor suppressor gene. Patients with NF2 develop hallmark schwannomas that require surgery or radiation, both of which have significant adverse effects. Recent studies have indicated that the tumor microenvironment-in particular, tumor blood vessels-of schwannomas may be an important therapeutic target. Furthermore, although much has been done to understand how merlin, the NF2 gene product, functions as a tumor suppressor gene in schwannoma cells, the functional role of merlin in the tumor microenvironment and the mechanism(s) by which merlin regulates angiogenesis to support schwannoma growth is largely unexplored. Here we report that the expression of semaphorin 3F (SEMA3F) was specifically downregulated in schwannoma cells lacking merlin/NF2. When we reintroduced SEMA3F in schwannoma cells, we observed normalized tumor blood vessels, reduced tumor burden, and extended survival in nude mice bearing merlin-deficient brain tumors. Next, using chemical inhibitors and gene knockdown with RNA interference, we found that merlin regulated expression of SEMA3F through Rho GTPase family member Rac1. This study shows that, in addition to the tumor-suppressing activity of merlin, it also functions to maintain physiological angiogenesis in the nervous system by regulating antiangiogenic factors such as SEMA3F. Restoring the relative balance of proangiogenic and antiangiogenic factors, such as increases in SEMA3F, in schwannoma microenvironment may represent a novel strategy to alleviate the clinical symptoms of NF2-related schwannomas.

0 Followers
 · 
119 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To review the discoveries in molecular pathophysiology contributing to the development of neurofibromatosis type 2 (NF2)-associated vestibular schwannomas and the recent experiences with drug therapies for these tumors. The review includes discussion of diagnostic criteria for NF2, populations to clinically consider for drug therapy and drug targets currently under consideration for NF2. Increased insight into the complex pathways that underlie both the genetic syndrome of NF2 and the specific pathogenesis of vestibular schwannomas has highlighted multiple potential therapeutic targets. These discoveries have been translated into clinical trials with some early promising results. Inhibition of angiogenesis as well as regulation of mammalian target of rapamycin and the epidermal growth factor receptor family of receptors are the focus of current clinical investigations. Although a great deal of work is ongoing to understand the multiple effects of the lack of the regulating protein Merlin on tumorgenesis in patients with NF2, advances are ongoing with clinical therapeutics. There is cause for enthusiasm based on recent results with antiangiogenesis therapy in select patients with NF2 and progressive vestibular schwannomas; however, awareness of the notable risks and limitations of therapies currently in development is required.
    Current opinion in otolaryngology & head and neck surgery 08/2012; 20(5):372-9. DOI:10.1097/MOO.0b013e328357d2ee · 1.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Findings from preclinical and clinical studies show that vascular normalization represents a novel strategy to enhance the efficacy of and overcome the acquired resistance to anti-angiogenic therapies in cancer. Several mechanisms of tumour vessel normalization have been revealed. Among them, secreted class 3 semaphorins (Sema3), which regulate axon guidance and angiogenesis, have been recently identified as novel vascular normalizing agents that inhibit metastatic dissemination by restoring vascular function. Here, we discuss the different biological functions and mechanisms of action of Sema3 in the context of tumour vascular normalization, and their impact on the different cellular components of the tumour microenvironment. © 2012 The Association for the Publication of the Journal of Internal Medicine.
    Journal of Internal Medicine 11/2012; 273(2). DOI:10.1111/joim.12017 · 5.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy.
    Neoplasia (New York, N.Y.) 12/2012; 14(12):1278-89. DOI:10.1593/neo.122096 · 5.40 Impact Factor

Preview

Download
7 Downloads
Available from