Article

Self-assembly of short peptides composed of only aliphatic amino acids and a combination of aromatic and aliphatic amino acids.

CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
Journal of Peptide Science (Impact Factor: 2.07). 03/2012; 18(5):283-92. DOI: 10.1002/psc.2395
Source: PubMed

ABSTRACT The morphology of structures formed by the self-assembly of short N-terminal t-butyloxycarbonyl (Boc) and C-terminal methyl ester (OMe) protected and Boc-deprotected hydrophobic peptide esters was investigated. We have observed that Boc-protected peptide esters composed of either only aliphatic hydrophobic amino acids or aliphatic hydrophobic amino acids in combination with aromatic amino acids, formed highly organized structures, when dried from methanol solutions. Transmission and scanning electron microscopic images of the peptides Boc-Ile-Ile-OMe, Boc-Phe-Phe-Phe-Ile-Ile-OMe and Boc-Trp-Ile-Ile-OMe showed nanotubular structures. Removal of the Boc group resulted in disruption of the ability to form tubular structures though spherical aggregates were formed. Both Boc-Leu-Ile-Ile-OMe and H-Leu-Ile-Ile-OMe formed only spherical nanostructures. Dynamic light scattering studies showed that aggregates of varying dimensions were present in solution suggesting that self-assembly into ordered structures is facilitated by aggregation in solution. Fourier transform infrared spectroscopy and circular dichroism spectroscopy data show that although all four of the protected peptides adopt well-defined tertiary structures, upon removal of the Boc group, only H-Phe-Phe-Phe-Ile-Ile-OMe had the ability to adopt β-structure. Our results indicate that hydrophobic interaction is a very important determinant for self-assembly and presence of charged and aromatic amino acids in a peptide is not necessary for self-assembly.

0 Bookmarks
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peptides have some unique and superior features compared to proteins. However, the use of peptides as therapeutics is hampered by their low stability and cell selectivity. In this study, a new lytic peptide (CL-1, FLGALFRALSRLL) was constructed. Under the physiological condition, peptide CL-1 self-assembled into dynamically stable aggregates with fibrils-like structures. Aggregated CL-1 demonstrated dramatically altered activity and stability in comparison with single molecule CL-1 and other lytic peptides: when incubated with co-cultured bacteria and tissue cells, CL-1 aggregates killed bacteria selectively but spared co-cultured human cells; CL-1 aggregates kept intact in human serum for more than five hours. Peptide-cell interaction studies performed on lipid monolayers and live human tissue cells revealed that in comparison with monomeric CL-1, aggregated CL-1 had decreased cell affinity and reduced membrane insertion capability on tissue cells. A dynamic process involving aggregate dissociation and rearrangement seemed to be an essential step for membrane bound CL-1 aggregates to realize its cytotoxicity to tissue cells. Our study suggests that peptide aggregation could be as important as the charge and secondary structure of a peptide in affecting peptide-cell interactions. Controlling peptide self-assembly represents a new way to increase the stability and cell selectivity of bioactive peptides for wide biomedical applications.
    Biomacromolecules 05/2013; · 5.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermally induced phase transformation in bioorganic nanotubes, which self-assembled from two ultrashort dipeptides of different origin, aromatic diphenylalanine (FF) and aliphatic dileucine (LL), is studied. In both FF and LL nanotubes, irreversible phase transformation found at 120-180 °C is governed by linear-to-cyclic dipeptide molecular modification followed by formation of extended β-sheet structure. As a result of this process, native open-end FF and LL nanotubes are transformed into ultrathin nanofibrils. Found deep reconstructions at all levels from macroscopic (morphology) and structural space symmetry to molecular give rise to new optical properties in both aromatic FF and aliphatic LL nanofibrils and generation of blue photoluminescence (PL) emission. It is shown that observed blue PL peak is similar in these supramolecular nanofibrillar structures and is excited by the network of non-covalent hydrogen bonds that link newly thermally induced neighboring cyclic dipeptide strands to final extended β-sheet structure of amyloid-like nanofibrils. The observed blue PL peak in short dipeptide nanofibrils is similar to the blue PL peak that was recently found in amyloid fibrils and can be considered as the optical signature of β-sheet structures. Nanotubular structures were characterized by environmental scanning electron microscope, ToF-secondary ion mass spectroscopy, CD and fluorescence spectroscopy. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
    Journal of Peptide Science 06/2014; · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peptides that self-assemble into nanostructures are of tremendous interest for biological, medical, photonic and nanotechnological applications. The enormous sequence space that is available from 20 amino acids probably harbours many interesting candidates, but it is currently not possible to predict supramolecular behaviour from sequence alone. Here, we demonstrate computational tools to screen for the aqueous self-assembly propensity in all of the 8,000 possible tripeptides and evaluate these by comparison with known examples. We applied filters to select for candidates that simultaneously optimize the apparently contradicting requirements of aggregation propensity and hydrophilicity, which resulted in a set of design rules for self-assembling sequences. A number of peptides were subsequently synthesized and characterized, including the first reported tripeptides that are able to form a hydrogel at neutral pH. These tools, which enable the peptide sequence space to be searched for supramolecular properties, enable minimalistic peptide nanotechnology to deliver on its promise.
    Nature Chemistry 01/2015; · 21.76 Impact Factor