The potential usage of caffeic acid phenethyl ester (CAPE) against chemotherapy-induced and radiotherapy-induced toxicity.

Department of Biochemistry, Fatih University Medical School, Ankara, Turkey.
Cell Biochemistry and Function (Impact Factor: 1.85). 03/2012; 30(5):438-43. DOI: 10.1002/cbf.2817
Source: PubMed

ABSTRACT Protection of the patients against the side effects of chemotherapy and radiotherapy regimens has attracted increasing interest of clinicians and practitioners. Caffeic acid phenethyl ester (CAPE), which is extracted from the propolis of honeybee hives as an active component, specifically inhibits nuclear factor κB at micromolar concentrations and show ability to stop 5-lipoxygenase-catalysed oxygenation of linoleic acid and arachidonic acid. CAPE has antiinflammatory, antiproliferative, antioxidant, cytostatic, antiviral, antibacterial, antifungal and antineoplastic properties. The purpose of this review is to summarize in vivo and in vitro usage of CAPE to prevent the chemotherapy-induced and radiotherapy-induced damages and side effects in experimental animals and to develop a new approach for the potential usage of CAPE in clinical trial as a protective agent during chemotherapy and radiotherapy regimens.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The global trend of restricting the use of antibiotic growth promoters (AGP) in animal production necessitates the need to develop valid alternatives to maintain productivity and sustainability of food animals. Previous studies suggest inhibition of bile salt hydrolase (BSH), an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization, is a promising approach to promote animal growth performance. To achieve the long term goal of developing novel alternatives to AGPs, in this study, a rapid and convenient high-throughput screening (HTS) system was developed and successfully used for identification of BSH inhibitors. With the aid of a high-purity BSH from a chicken Lactobacillus salivarius strain, we optimized various screening conditions (e.g. BSH concentration, reaction buffer pH, incubation temperature and length, substrate type and concentration) and establish a precipitation-based screening approach to identify BSH inhibitors using 96-well or 384-well microplates. A pilot HTS was performed using a small compound library comprised of 2,240 biologically active and structurally diverse compounds. Among the 107 hits, several promising and potent BSH inhibitors (e.g. riboflavin and phenethyl caffeate) were selected and validated by standard BSH activity assay. Interestingly, the HTS also identified a panel of antibiotics as BSH inhibitor; in particular, various tetracycline antibiotics and roxarsone, the widely used AGP, have been demonstrated to display potent inhibitory effect on BSH. Together, this study developed an efficient HTS system and identified several BSH inhibitors with potential as alternatives to AGP. In addition, the findings from this study also suggest a new mode of action of AGP for promoting animal growth.
    PLoS ONE 01/2014; 9(1):e85344. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Combinations of antioxidants are believed to be more effective than single antioxidant because when antioxidants are combined they support each other synergistically to create a magnified effect. Discovering the enhancer effects or synergies between bioactive components is valuable for resisting oxidative stress and improving health benefits. The aim of this study was to investigate a possible cooperation of natural antioxidant caffeic acid phenethyl ester (CAPE) with synthetic antioxidant Trolox in the model systems of chemical generation of free radicals, lipid peroxidation of microsomes and radiation-induced oxidative injury in L929 cells. Based on the intermolecular interaction between CAPE and Trolox, the present study shows a synergistic effect of CAPE and Trolox in combination on elimination of three different free radicals and inhibition of lipid peroxidation initiated by three different systems. CAPE and Trolox added simultaneously to the L929 cells exerted an enhanced preventive effect on the oxidative injury induced by radiation through decreasing ROS generation, protecting plasma membrane and increasing the ratios of reduced glutathione/oxidized glutathione and the expression of key antioxidant enzymes mediated by nuclear factorerythroid 2 p45-related factor 2 (Nrf2). Our results showed for the first time that administration of CAPE and Trolox in combination may exert synergistic antioxidant effects, and further indicate that CAPE and Trolox combination functions mainly through scavenging ROS directly, inhibiting lipid peroxidation and promoting redox cycle of GSH mediated by Nrf2-regulated glutathione peroxidase and glutathione reductase expression.
    Chemico-biological interactions 11/2013; · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Caffeic acid phenethyl ester (CAPE) is known to reduce the generation of oxygen-derived free radicals, which is a major mechanism of aminoglycoside-induced ototoxicity. The objective of the present study was to evaluate the effects of CAPE on neomycin-induced ototoxicity in zebrafish (Brn3c: EGFP).
    International journal of pediatric otorhinolaryngology. 05/2014;


Available from
May 30, 2014