Alzheimer's Disease-Related Loss of Pin1 Function Influences the Intracellular Localization and the Processing of A beta PP

Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
Journal of Alzheimer's disease: JAD (Impact Factor: 3.61). 03/2012; 30(2):277-97. DOI: 10.3233/JAD-2012-111259
Source: PubMed

ABSTRACT Increased amyloidogenic processing of the amyloid-β protein precursor (AβPP) is a characteristic of Alzheimer's disease (AD). We previously observed that the prolyl isomerase Pin1, which is down-regulated in AD, regulates AβPP conformation accelerating cis/trans isomerization of the phospho-Thr668-Pro669 peptide bond, and that Pin1 knockout in mice increases the amyloidogenic processing of AβPP, although the underlying mechanism is still unknown. Since the intracellular localization of AβPP determines whether the processing will be amyloidogenic or non-amyloidogenic, here we addressed the question whether loss of Pin1 function affects the intracellular localization of AβPP, influencing AβPP processing. Using cellular models of Pin1 knockout and Pin1 knockdown, we have demonstrated that lowering Pin1 levels changed the intracellular localization and the processing of AβPP. Under these conditions, less AβPP was retained at the plasma membrane favoring the amyloidogenic processing, and the kinetics of AβPP internalization increased as well as the nuclear trafficking of AβPP C-terminal fragment AICD. In addition, AβPPThr668Ala mutant, which cannot bind to Pin1 and retains more trans conformation, rescued the levels of AβPP at the plasma membrane in Pin1 knockout cells. Thus, loss of Pin1 function contributes to amyloidogenic pathways, by facilitating both the removal of AβPP from compartments where it is mostly non-amyloidogenic and its internalization to more amyloidogenic compartments. These data suggest that physiological levels of Pin1 are important to control the intracellular localization and metabolic fate of Thr668-phosphorylated AβPP, and regulation of AβPP conformation is especially important in pathologic conditions of AβPP hyperphosphorylation and/or loss of Pin1 function, associated with AD.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are sensitive and efficient organelles that regulate essential biological processes including: energy metabolism, decoding and transduction of intracellular signals, and balance between cell death and survival. Of note, dysfunctions in mitochondrial physiology are a general feature of cancer cells, leading to transformation-related features such as altered cellular metabolism, survival under stress conditions and reduced apoptotic response to chemotherapy. Mitochondrial apoptosis is a finely regulated process that derives from activation of multiple signaling networks. A crucial biochemical requirement for transducing pro-apoptotic stimuli is represented by kinase-dependent phosphorylation cascades. In this context a pivotal role is played by the prolyl-isomerase Pin1, which translates Ser/Thr-Pro phosphorylation into conformational changes able to modify the activities of its substrates. In this review we will discuss the impact of Pin1 in regulating various aspects of apoptosis in different biological contexts with particular emphasis on cancer and neurodegenerative diseases.
    Mitochondrion 11/2014; 19. DOI:10.1016/j.mito.2014.08.003 · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The steady and dramatic increase in the incidence of Alzheimer's disease (AD) and the lack of effective treatments have stimulated the search for strategies to prevent or delay its onset and/or progression. Since the diagnosis of dementia requires a number of established features that are present when the disease is fully developed, but not always in the early stages, the need for a biological marker has proven to be urgent, in terms of both diagnosis and monitoring of AD. AD has been shown to affect peripheral blood mononuclear cells (PBMCs) that are a critical component of the immune system which provide defence against infection. Although studies are continuously supplying additional data that emphasize the central role of inflammation in AD, PBMCs have not been sufficiently investigated in this context. Delineating biochemical alterations in AD blood constituents may prove valuable in identifying accessible footprints that reflect degenerative processes within the Central Nervous System (CNS). In this review, we address the role of biomarkers in AD with a focus on the notion that PBMCs may serve as a peripheral laboratory to find molecular signatures that could aid in differential diagnosis with other forms of dementia and in monitoring of disease progression.
    BioMed Research International 04/2014; 2014:169203. DOI:10.1155/2014/169203 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peptidyl-prolyl cis/trans isomerases (PPIases), a unique family of molecular chaperones, regulate protein folding at proline residues. These residues are abundant within intrinsically disordered proteins, like the microtubule-associated protein tau. Tau has been shown to become hyperphosphorylated and accumulate as one of the two main pathological hallmarks in Alzheimer's disease (AD), the other being amyloid beta (Aβ). PPIases, including Pin1, FK506-binding protein (FKBP) 52, FKBP51, and FKBP12, have been shown to interact with and regulate tau biology. This interaction is particularly important given the numerous proline-directed phosphorylation sites found on tau and the role phosphorylation has been found to play in pathogenesis. This regulation then affects downstream aggregation and oligomerization of tau. However, many PPIases have yet to be explored for their effects on tau biology, despite the high likelihood of interaction based on proline content. Moreover, Pin1, FKBP12, FKBP52, cyclophilin (Cyp) A, CypB, and CypD have been shown to also regulate Aβ production or the toxicity associated with Aβ pathology. Therefore, PPIases directly and indirectly regulate pathogenic protein multimerization in AD and represent a family rich in targets for modulating the accumulation and toxicity.This article is protected by copyright. All rights reserved.
    Journal of Neurochemistry 01/2015; 133(1). DOI:10.1111/jnc.13033 · 4.24 Impact Factor