Article

The long-lasting effects of JDTic, a kappa opioid receptor antagonist, on the expression of ethanol-seeking behavior and the relapse drinking of female alcohol-preferring (P) rats.

Department of Psychiatry, Institute of Psychiatric Research, Indiana School of Medicine, Indianapolis, IN 46202, USA.
Pharmacology Biochemistry and Behavior (Impact Factor: 2.82). 03/2012; 101(4):581-7. DOI: 10.1016/j.pbb.2012.03.006
Source: PubMed

ABSTRACT The current study assessed the effects of the selective kappa opioid antagonist JDTic on alcohol (EtOH)-seeking behavior, EtOH relapse, and maintenance responding for EtOH. Adult alcohol-preferring (P) rats were trained in 2-lever operant chambers to self-administer 15% EtOH (v/v) on a fixed-ratio 5 (FR-5) and water on a FR-1 schedule of reinforcement during 1-hr sessions. After 10 weeks, rats underwent extinction training for seven sessions. Rats were then maintained in their home cages for 3 weeks without EtOH access. All rats received an injection (s.c.) of 0, 1, 3, or 10 mg/kg JDTic (n=11-14/group) after the first week of the home cage period. Rats were then tested using the Pavlovian Spontaneous Recovery paradigm (PSR; an animal model of alcohol-seeking) for four sessions during which, responses on the EtOH and water levers were recorded but did not produce their respective reinforcer. Following PSR testing rats were returned to their home cages without access to EtOH for one week prior to the start of EtOH relapse testing. To examine EtOH relapse responding, rats were returned to the operant chambers and the EtOH (FR5) and water (FR1) levers were active. Finally, rats were then tested over 17 operant sessions to assess the effects of JDTic on maintenance responding for EtOH. Rats received 0, 1, 3, or 10 mg/kg JDTic (counterbalanced from the initial experiment) 30 minutes prior to the initial maintenance session. JDTic administered 14 and 25 days prior to testing dose-dependently reduced the expression of an EtOH PSR and relapse responding. In contrast, JDTic did not alter EtOH responding under maintenance conditions. Overall, the results of this study indicate that different mechanisms mediate EtOH self-administration under relapse and maintenance conditions and kappa opioid receptors are involved in mediating EtOH-seeking behavior and relapse responding but not on-going EtOH self-administration.

0 Bookmarks
 · 
77 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress is related to heavy alcohol use and relapse in alcoholics. Using the reinstatement model, we have shown that corticotropin-releasing factor (CRF) underlies stress-induced relapse to alcohol seeking in laboratory rodents. Little is known about how other neurotransmitters interact with CRF in these effects. Dynorphin and its receptor (kappa opioid receptor, KOR) are involved in stress responses and in alcohol seeking. KOR and CRF receptors (CRF R) may interact in the production of stress-related behaviors but it is not known whether this interaction is involved in reinstatement of alcohol seeking.
    Brain and behavior. 05/2014; 4(3):356-67.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
    Peptides 10/2013; · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Kappa opioid receptors and their endogenous neuropeptide ligand, dynorphin A, are densely localized in limbic and cortical areas comprising the brain reward system, and appear to play a key role in modulating stress and mood. Growing literature indicates that kappa receptor antagonists may be beneficial in the treatment of mood and addictive disorders. However, existing literature on kappa receptor antagonists have used extensively JDTic and nor-BNI which exhibit long-lasting pharmacokinetic properties that complicate experimental design and interpretation of results. Herein, we report for the first time the in vitro and in vivo pharmacological profile of a novel, potent kappa opioid receptor antagonist with excellent selectivity over other receptors and markedly improved drug-like properties over existing research tools. LY2456302 exhibits canonical pharmacokinetic properties that are favorable for clinical development, with rapid absorption (tmax: 1-2 hr) and good oral bioavailability (F=25%). Oral LY2456302 administration selectively and potently occupied central kappa opioid receptors in vivo (ED50 = 0.33 mg/kg), without evidence of mu or delta receptor occupancy at doses up to 30 mg/kg. LY2456302 potently blocked kappa agonist-mediated analgesia and disruption of prepulse inhibition, without affecting mu-agonist-mediated effects at doses >30-fold higher. Importantly, LY2456302 did not block kappa-agonist-induced analgesia one week after administration, indicating lack of long-lasting pharmacodynamic effects. In contrast to the nonselective opioid antagonist naltrexone, LY2456302 produced antidepressant-like effects in the mouse forced swim test and enhanced the effects of imipramine and citalopram. LY2456302 reduced ethanol self-administration in alcohol-preferring (P) rats and, unlike naltrexone, did not exhibit significant tolerance upon 4 days of repeated dosing. LY2456302 is a centrally-penetrant, potent, kappa-selective antagonist with pharmacokinetic properties favorable for clinical development and activity in animal models predictive of efficacy in mood and addictive disorders.
    Neuropharmacology 09/2013; · 4.82 Impact Factor

Preview

Download
0 Downloads
Available from