Article

Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma.

Kolektor Group, Nanotesla Institute, Ljubljana, Slovenia.
Biomaterials (Impact Factor: 7.6). 03/2012; 33(17):4379-91. DOI:10.1016/j.biomaterials.2012.02.061
Source: PubMed

ABSTRACT Cancer immuno-gene therapy is an introduction of nucleic acids encoding immunostimulatory proteins, such as cytokine interleukin 12 (IL-12), into somatic cells to stimulate an immune response against a tumor. Various methods can be used for the introduction of nucleic acids into cells; magnetofection involves binding of nucleic acids to magnetic nanoparticles with subsequent exposure to an external magnetic field. Here we show that surface modified superparamagnetic iron oxide nanoparticles (SPIONs) with a combination of polyacrylic acid (PAA) and polyethylenimine (PEI) (SPIONs-PAA-PEI) proved to be safe and effective for magnetofection of cells and tumors in mice. Magnetofection of cells with plasmid DNA encoding reporter gene using SPIONs-PAA-PEI was superior in transfection efficiency to commercially available SPIONs. Magnetofection of murine mammary adenocarcinoma with plasmid DNA encoding IL-12 using SPIONs-PAA-PEI resulted in significant antitumor effect and could be further refined for cancer immuno-gene therapy.

0 0
 · 
0 Bookmarks
 · 
192 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Gene therapy is a promising new technique for treating many serious incurable diseases, such as cancer and genetic disorders. The main problem limiting the application of this strategy in vivo is the difficulty of transporting large, fragile and negatively charged molecules like DNA into the nucleus of the cell without degradation. The key to success of gene therapy is to create safe and efficient gene delivery vehicles. Ideally, the vehicle must be able to remain in the bloodstream for a long time and avoid uptake by the mononuclear phagocyte system, in order to ensure its arrival at the desired targets. Moreover, this carrier must also be able to transport the DNA efficiently into the cell cytoplasm, avoiding lysosomal degradation. Viral vehicles are the most commonly used carriers for delivering DNA and have long been used for their high efficiency. However, these vehicles can trigger dangerous immunological responses. Scientists need to find safer and cheaper alternatives. Consequently, the non-viral carriers are being prepared and developed until techniques for encapsulating DNA can be found. This review highlights gene therapy as a new promising technique used to treat many incurable diseases and the different strategies used to transfer DNA, taking into account that introducing DNA into the cell nucleus without degradation is essential for the success of this therapeutic technique.
    International journal of pharmaceutics 11/2013; · 2.96 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Spurred by recent progress in materials chemistry and drug delivery, stimuli-responsive devices that deliver a drug in spatial-, temporal- and dosage-controlled fashions have become possible. Implementation of such devices requires the use of biocompatible materials that are susceptible to a specific physical incitement or that, in response to a specific stimulus, undergo a protonation, a hydrolytic cleavage or a (supra)molecular conformational change. In this Review, we discuss recent advances in the design of nanoscale stimuli-responsive systems that are able to control drug biodistribution in response to specific stimuli, either exogenous (variations in temperature, magnetic field, ultrasound intensity, light or electric pulses) or endogenous (changes in pH, enzyme concentration or redox gradients).
    Nature Material 10/2013; 12(11):991-1003. · 35.75 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Radiation induced transcriptional targeting is a gene therapy approach that takes advantage of the targeting abilities of radiotherapy by using radio inducible promoters to spatially and temporally limit the transgene expression. Cyclin dependent kinase inhibitor 1 (CDKN1A), also known as p21, is a crucial regulator of the cell cycle, mediating G1 phase arrest in response to a variety of stress stimuli, including DNA damaging agents like irradiation. The aim of the study was to evaluate the suitability of the p21 promoter for radiation induced transcriptional targeting with the objective to test the therapeutic effectiveness of the combined radio-gene therapy with p21 promoter driven therapeutic gene interleukin 12. To test the inducibility of the p21 promoter, three reporter gene experimental models with green fluorescent protein (GFP) under the control of p21 promoter were established by gene electrotransfer of plasmid DNA: stably transfected cells, stably transfected tumors, and transiently transfected muscles. Induction of reporter gene expression after irradiation was determined using a fluorescence microplate reader in vitro and by non-invasive fluorescence imaging using fluorescence stereomicroscope in vivo. The antitumor effect of the plasmid encoding the p21 promoter driven interleukin 12 after radio-gene therapy was determined by tumor growth delay assay and by quantification of intratumoral and serum levels of interleukin 12 protein and intratumoral concentrations of interleukin 12 mRNA. Using the reporter gene experimental models, p21 promoter was proven to be inducible with radiation, the induction was not dose dependent, and it could be re-induced. Furthermore radio-gene therapy with interleukin 12 under control of the p21 promoter had a good antitumor therapeutic effect with the statistically relevant tumor growth delay, which was comparable to that of the same therapy using a constitutive promoter. In this study p21 promoter was proven to be a suitable candidate for radiation induced transcriptional targeting. As a proof of principle the therapeutic value was demonstrated with the radio-inducible interleukin 12 plasmid providing a synergistic antitumor effect to radiotherapy alone, which makes this approach feasible for the combined treatment with radiotherapy.
    Molecular Cancer 11/2013; 12(1):136. · 5.13 Impact Factor

Full-text

View
79 Downloads
Available from
Feb 19, 2013