Article

Gene expression in extratumoral microenvironment predicts clinical outcome in breast cancer patients

Department of Epidemiology, University of North Carolina at Chapel Hill, Campus Box 7435, Chapel Hill, NC 27599, USA. .
Breast cancer research: BCR (Impact Factor: 5.88). 03/2012; 14(2):R51. DOI: 10.1186/bcr3152
Source: PubMed

ABSTRACT A gene expression signature indicative of activated wound responses is common to more than 90% of non-neoplastic tissues adjacent to breast cancer, but these tissues also exhibit substantial heterogeneity. We hypothesized that gene expression subtypes of breast cancer microenvironment can be defined and that these microenvironment subtypes have clinical relevance.
Gene expression was evaluated in 72 patient-derived breast tissue samples adjacent to invasive breast cancer or ductal carcinoma in situ. Unsupervised clustering identified two distinct gene expression subgroups that differed in expression of genes involved in activation of fibrosis, cellular movement, cell adhesion and cell-cell contact. We evaluated the prognostic relevance of extratumoral subtype (comparing the Active group, defined by high expression of fibrosis and cellular movement genes, to the Inactive group, defined by high expression of claudins and other cellular adhesion and cell-cell contact genes) using clinical data. To establish the biological characteristics of these subtypes, gene expression profiles were compared against published and novel tumor and tumor stroma-derived signatures (Twist-related protein 1 (TWIST1) overexpression, transforming growth factor beta (TGF-β)-induced fibroblast activation, breast fibrosis, claudin-low tumor subtype and estrogen response). Histological and immunohistochemical analyses of tissues representing each microenvironment subtype were performed to evaluate protein expression and compositional differences between microenvironment subtypes.
Extratumoral Active versus Inactive subtypes were not significantly associated with overall survival among all patients (hazard ratio (HR) = 1.4, 95% CI 0.6 to 2.8, P = 0.337), but there was a strong association with overall survival among estrogen receptor (ER) positive patients (HR = 2.5, 95% CI 0.9 to 6.7, P = 0.062) and hormone-treated patients (HR = 2.6, 95% CI 1.0 to 7.0, P = 0.045). The Active subtype of breast microenvironment is correlated with TWIST-overexpression signatures and shares features of claudin-low breast cancers. The Active subtype was also associated with expression of TGF-β induced fibroblast activation signatures, but there was no significant association between Active/Inactive microenvironment and desmoid type fibrosis or estrogen response gene expression signatures. Consistent with the RNA expression profiles, Active cancer-adjacent tissues exhibited higher density of TWIST nuclear staining, predominantly in epithelium, and no evidence of increased fibrosis.
These results document the presence of two distinct subtypes of microenvironment, with Active versus Inactive cancer-adjacent extratumoral microenvironment influencing the aggressiveness and outcome of ER-positive human breast cancers.

Download full-text

Full-text

Available from: Patricia Casbas-Hernandez, Jul 16, 2014
2 Followers
 · 
142 Views
  • Source
    Breast Diseases A Year Book Quarterly 01/2013; 24(1):23–27. DOI:10.1016/j.breastdis.2013.01.047
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction The TWIST homolog 1 (TWIST1) is a transcription factor that induces epithelial to mesenchymal transition (EMT), a key process in metastasis. The purpose of this study was to investigate whether TWIST1 expression predicts disease progression in a large breast cancer cohort with long-term clinical follow-up, and to reveal the biology related to TWIST1 mediated disease progression. Methods TWIST1 mRNA expression level was analyzed by quantitative real-time reverse polymerase chain reaction (RT-PCR) in 1,427 primary breast cancers. In uni- and multivariate analysis using Cox regression, TWIST1 mRNA expression level was associated with metastasis-free survival (MFS), disease-free survival (DFS) and overall survival (OS). Separate analyses in lymph node-negative patients (LNN, n = 778) who did not receive adjuvant systemic therapy, before and after stratification into estrogen receptor (ER)-positive (n = 552) and ER-negative (n = 226) disease, were also performed. The association of TWIST1 mRNA with survival endpoints was assessed using Kaplan-Meier analysis. Using gene expression arrays, genes showing a significant Spearman rank correlation with TWIST1 were used to identify overrepresented Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)-annotated biological pathways. Results Increased mRNA expression level of TWIST1 analyzed as a continuous variable in both uni- and multivariate analysis was associated with shorter MFS in all patients (hazard ratio (HR): 1.17, 95% confidence interval, (95% CI):1.09 to 1.26; and HR: 1.17, 95% CI: 1.08 to 1.26; respectively), in LNN patients (HR: 1.22, 95% CI: 1.09 to 1.36; and HR: 1.21, 95% CI: 1.07 to 1.36; respectively) and in the ER-positive subgroup of LNN patients (HR: 1.34, 95% CI: 1.17 to 1.53; and HR: 1.32, 95% CI: 1.14 to 1.53; respectively). Similarly, high TWIST1 expression was associated with shorter DFS and OS in all patients and in the LNN/ER-positive subgroup. In contrast, no association of TWIST1 mRNA expression with MFS, DFS or OS was observed in ER-negative patients. Genes highly correlated with TWIST1 were significantly enriched for cell adhesion and ECM-related signaling pathways. Furthermore, TWIST1 mRNA was highly expressed in tumor stroma and positively related to tumor stromal content (P <0.001). Conclusions TWIST1 mRNA expression is an independent prognostic factor for poor prognosis in LNN/ER-positive breast cancer. The biological associations suggest an involvement of the tumor microenvironment in TWIST1's adverse role in breast cancer.
    Breast cancer research: BCR 09/2012; 14(5):R123. DOI:10.1186/bcr3317 · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Field cancerization effects as well as isolated tumor cell foci extending well beyond the invasive tumor margin have been described previously to account for local recurrence rates following breast conserving surgery despite adequate surgical margins and breast radiotherapy. To look for evidence of possible tumor cell contamination or field cancerization by genetic effects, a pilot study (Study 1: 12 sample pairs) followed by a verification study (Study 2: 20 sample pairs) were performed on DNA extracted from HER2-positive breast tumors and matching normal adjacent mammary tissue samples excised 1–3 cm beyond the invasive tumor margin. High-resolution molecular inversion probe (MIP) arrays were used to compare genomic copy number variations, including increased HER2 gene copies, between the paired samples; as well, a detailed histologic and immunohistochemical (IHC) re-evaluation of all Study 2 samples was performed blinded to the genomic results to characterize the adjacent normal tissue composition bracketing the DNA-extracted samples. Overall, 14/32 (44 %) sample pairs from both studies produced genome-wide evidence of genetic aberrations including HER2 copy number gains within the adjacent normal tissue samples. The observed single-parental origin of monoallelic HER2 amplicon haplotypes shared by informative tumor–normal pairs, as well as commonly gained loci elsewhere on 17q, suggested the presence of contaminating tumor cells in the genomically aberrant normal samples. Histologic and IHC analyses identified occult 25–200 μm tumor cell clusters overexpressing HER2 scattered in more than half, but not all, of the genomically aberrant normal samples re-evaluated, but in none of the genomically normal samples. These genomic and microscopic findings support the conclusion that tumor cell contamination rather than genetic field cancerization represents the likeliest cause of local clinical recurrence rates following breast conserving surgery, and mandate caution in assuming the genomic normalcy of histologically benign appearing peritumor breast tissue. Electronic supplementary material The online version of this article (doi:10.1007/s10549-012-2290-3) contains supplementary material, which is available to authorized users.
    Breast Cancer Research and Treatment 10/2012; 136(3). DOI:10.1007/s10549-012-2290-3 · 4.20 Impact Factor