Article

Comparative cytogenetic analysis of sex chromosomes in several Canidae species using zoo-FISH.

Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland.
Folia Biologica (Impact Factor: 0.89). 01/2012; 60(1-2):11-6. DOI: 10.3409/fb60_1-2.11-16
Source: PubMed

ABSTRACT Sex chromosome differentiation began early during mammalian evolution. The karyotype of almost all placental mammals living today includes a pair of heterosomes: XX in females and XY in males. The genomes of different species may contain homologous synteny blocks indicating that they share a common ancestry. One of the tools used for their identification is the Zoo-FISH technique. The aim of the study was to determine whether sex chromosomes of some members of the Canidae family (the domestic dog, the red fox, the arctic fox, an interspecific hybrid: arctic fox x red fox and the Chinese raccoon dog) are evolutionarily conservative. Comparative cytogenetic analysis by Zoo-FISH using painting probes specific to domestic dog heterosomes was performed. The results show the presence of homologous synteny covering the entire structures of the X and the Y chromosomes. This suggests that sex chromosomes are conserved in the Canidae family. The data obtained through Zoo-FISH karyotype analysis append information obtained using other comparative genomics methods, giving a more complete depiction of genome evolution.

0 Bookmarks
 · 
511 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A complete set of paint probes, with each probe specific for a single type of dog chromosome, was generated by DOP-PCR amplification of flow-sorted chromosomes. These probes have been assigned to high-resolution G-banded chromosomes of the dog and Arctic fox by fluorescence in-situ hybridization. On the basis of these results we propose improved nomenclature for the G-banded karyotypes of the dog and Artic fox. A comparative map between the Arctic fox, red fox and dog has been established based on results from chromosome painting and high-resolution G-banding. This map demonstrates that the euchromatic complements of these three canid species consists of 42 conserved segments. Thirty-four of these 42 segments are each represented by a single dog chromosome with dog chromosomes 1, 13, 18 and 19 each retaining two segments, respectively. The autosomes of the Arctic fox and red fox could be reconstructed from these 42 blocks in different combinations through chromosomal fusions. Our findings suggest that chromosome fusion has been the principal mechanism of karyotype evolution occuring during speciation in canids.
    Chromosome Research 02/2000; 8(3):253-63. · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Domestic cats and dogs are important companion animals and model animals in biomedical research. The cat has a highly conserved Domestic cats and dogs are important companion animals and model animals in biomedical research. The cat has a highly conserved karyotype, closely resembling the ancestral karyotype of mammals, while the dog has one of the most extensively rearranged karyotype, closely resembling the ancestral karyotype of mammals, while the dog has one of the most extensively rearranged mammalian karyotypes investigated so far. We have constructed the first detailed comparative chromosome map of the domestic mammalian karyotypes investigated so far. We have constructed the first detailed comparative chromosome map of the domestic dog and cat by reciprocal chromosome painting. Dog paints specific for the 38 autosomes and the X chromosomes delineated 68 dog and cat by reciprocal chromosome painting. Dog paints specific for the 38 autosomes and the X chromosomes delineated 68 conserved chromosomal segments in the cat, while reverse painting of cat probes onto red fox and dog chromosomes revealed conserved chromosomal segments in the cat, while reverse painting of cat probes onto red fox and dog chromosomes revealed 65 conserved segments. Most conserved segments on cat chromosomes also show a high degree of conservation in G-banding patterns 65 conserved segments. Most conserved segments on cat chromosomes also show a high degree of conservation in G-banding patterns compared with their canine counterparts. At least 47 chromosomal fissions (breaks), 25 fusions and one inversion are needed compared with their canine counterparts. At least 47 chromosomal fissions (breaks), 25 fusions and one inversion are needed to convert the cat karyotype to that of the dog, confirming that extensive chromosome rearrangements differentiate the karyotypes to convert the cat karyotype to that of the dog, confirming that extensive chromosome rearrangements differentiate the karyotypes of the cat and dog. Comparative analysis of the distribution patterns of conserved segments defined by dog paints on cat and of the cat and dog. Comparative analysis of the distribution patterns of conserved segments defined by dog paints on cat and human chromosomes has refined the human/cat comparative genome map and, most importantly, has revealed 15 cryptic inversions human chromosomes has refined the human/cat comparative genome map and, most importantly, has revealed 15 cryptic inversions in seven large chromosomal regions of conserved synteny between humans and cats. in seven large chromosomal regions of conserved synteny between humans and cats.
    Chromosome Research 06/2000; 8(5):393-404. · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relatively new field of phylogenomics is beginning to reveal the potential of genomic data for evolutionary studies. As the cost of whole genome sequencing falls, anticipation of complete genome sequences from divergent species, reflecting the major lineages of modern mammals, is no longer a distant dream. In this article, we describe how comparative genomic data from mammals is progressing to resolve long-standing phylogenetic controversies, to refine dogma on how chromosomes evolve and to guide annotation of human and other vertebrate genomes.
    Trends in Genetics 01/2005; 20(12):631-9. · 9.77 Impact Factor

Full-text (2 Sources)

View
18 Downloads
Available from
Jun 2, 2014