Single-Cell Census of Mechanosensitive Channels in Living Bacteria

University of Groningen, Netherlands
PLoS ONE (Impact Factor: 3.23). 03/2012; 7(3):e33077. DOI: 10.1371/journal.pone.0033077
Source: PubMed


Bacteria are subjected to a host of different environmental stresses. One such insult occurs when cells encounter changes in the osmolarity of the surrounding media resulting in an osmotic shock. In recent years, a great deal has been learned about mechanosensitive (MS) channels which are thought to provide osmoprotection in these circumstances by opening emergency release valves in response to membrane tension. However, even the most elementary physiological parameters such as the number of MS channels per cell, how MS channel expression levels influence the physiological response of the cells, and how this mean number of channels varies from cell to cell remain unanswered. In this paper, we make a detailed quantitative study of the expression of the mechanosensitive channel of large conductance (MscL) in different media and at various stages in the growth history of bacterial cultures. Using both quantitative fluorescence microscopy and quantitative Western blots our study complements earlier electrophysiology-based estimates and results in the following key insights: i) the mean number of channels per cell is much higher than previously estimated, ii) measurement of the single-cell distributions of such channels reveals marked variability from cell to cell and iii) the mean number of channels varies under different environmental conditions. The regulation of MscL expression displays rich behaviors that depend strongly on culturing conditions and stress factors, which may give clues to the physiological role of MscL. The number of stress-induced MscL channels and the associated variability have far reaching implications for the in vivo response of the channels and for modeling of this response. As shown by numerous biophysical models, both the number of such channels and their variability can impact many physiological processes including osmoprotection, channel gating probability, and channel clustering.

Download full-text


Available from: Maja Bialecka-Fornal, May 28, 2015
  • Source
    • "Recent work on E. coli channels has concentrated on protein abundance and its relationship to the physiological role of the channels. Thus, the Phillips' group found that the abundance of MscL subunits was much higher than previously predicted and this has been supported by other studies [77] [79]. Indeed the reported abundances for all of the E. coli channel subunits fits quite well with their reported contributions to survival and with the idea that low expression levels are a major contributor to phenotypes observed with mutants [74] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanosensitive channels are ubiquitous and highly studied. However, the evolution of the bacterial channels remains enigmatic. It can be argued that mechanosensitivity might be a feature of all membrane proteins with some becoming progressively less sensitive to membrane tension over the course of evolution. Bacteria and archaea exhibit two main classes of channels, MscS and MscL. Present day channels suggest that the evolution of MscL may be highly constrained, whereas MscS has undergone elaboration via gene fusion (and potentially gene fission) events to generate a diversity of channel structures. Some of these channel variants are constrained to a small number of genera or species. Some are only found in higher organisms. Only exceptionally have these diverse channels been investigated in any detail. In this review we consider both the processes that might have led to the evolved complexity but also some of the methods exploiting the explosion of genome sequences to understand (and/or track) their distribution. The role of MscS-related channels in calcium-mediated cell biology events is considered.
    Cell Calcium 12/2014; 57(3). DOI:10.1016/j.ceca.2014.12.011 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single-celled organisms must survive exposure to environmental extremes. Perhaps one of the most variable and potentially life-threatening changes that can occur is that of a rapid and acute decrease in external osmolarity. This easily translates into several atmospheres of additional pressure that can build up within the cell. Without a protective mechanism against such pressures, the cell will lyse. Hence, most microbes appear to possess members of one or both families of bacterial mechanosensitive channels, MscS and MscL, which can act as biological emergency release valves that allow cytoplasmic solutes to be jettisoned rapidly from the cell. While this is undoubtedly a function of these proteins, the discovery of the presence of MscS homologues in plant organelles and MscL in fungus and mycoplasma genomes may complicate this simplistic interpretation of the physiology underlying these proteins. Here we compare and contrast these two mechanosensitive channel families, discuss their potential physiological roles, and review some of the most relevant data that underlie the current models for their structure and function.
    Journal of bacteriology 06/2012; 194(18):4802-9. DOI:10.1128/JB.00576-12 · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cells perceive force through a variety of molecular sensors, of which the mechanosensitive ion channels are the most efficient and act the fastest. These channels apparently evolved to prevent osmotic lysis of the cell as a result of metabolite accumulation and/or external changes in osmolarity. From this simple beginning, nature developed specific mechanosensitive enzymes that allow us to hear, maintain balance, feel touch and regulate many systemic variables, such as blood pressure. For a channel to be mechanosensitive it needs to respond to mechanical stresses by changing its shape between the closed and open states. In that way, forces within the lipid bilayer or within a protein link can do work on the channel and stabilize its state. Ion channels have the highest turnover rates of all enzymes, and they can act as both sensors and effectors, providing the necessary fluxes to relieve osmotic pressure, shift the membrane potential or initiate chemical signaling. In this Commentary, we focus on the common mechanisms by which mechanical forces and the local environment can regulate membrane protein structure, and more specifically, mechanosensitive ion channels.
    Journal of Cell Science 07/2012; 125(Pt 13):3075-83. DOI:10.1242/jcs.092353 · 5.43 Impact Factor
Show more