Article

Small-Animal PET Imaging of Amyloid-Beta Plaques with [C]PiB and Its Multi-Modal Validation in an APP/PS1 Mouse Model of Alzheimer's Disease

Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
PLoS ONE (Impact Factor: 3.53). 03/2012; 7(3):e31310. DOI: 10.1371/journal.pone.0031310
Source: PubMed

ABSTRACT In vivo imaging and quantification of amyloid-β plaque (Aβ) burden in small-animal models of Alzheimer's disease (AD) is a valuable tool for translational research such as developing specific imaging markers and monitoring new therapy approaches. Methodological constraints such as image resolution of positron emission tomography (PET) and lack of suitable AD models have limited the feasibility of PET in mice. In this study, we evaluated a feasible protocol for PET imaging of Aβ in mouse brain with [(11)C]PiB and specific activities commonly used in human studies. In vivo mouse brain MRI for anatomical reference was acquired with a clinical 1.5 T system. A recently characterized APP/PS1 mouse was employed to measure Aβ at different disease stages in homozygous and hemizygous animals. We performed multi-modal cross-validations for the PET results with ex vivo and in vitro methodologies, including regional brain biodistribution, multi-label digital autoradiography, protein quantification with ELISA, fluorescence microscopy, semi-automated histological quantification and radioligand binding assays. Specific [(11)C]PiB uptake in individual brain regions with Aβ deposition was demonstrated and validated in all animals of the study cohort including homozygous AD animals as young as nine months. Corresponding to the extent of Aβ pathology, old homozygous AD animals (21 months) showed the highest uptake followed by old hemizygous (23 months) and young homozygous mice (9 months). In all AD age groups the cerebellum was shown to be suitable as an intracerebral reference region. PET results were cross-validated and consistent with all applied ex vivo and in vitro methodologies. The results confirm that the experimental setup for non-invasive [(11)C]PiB imaging of Aβ in the APP/PS1 mice provides a feasible, reproducible and robust protocol for small-animal Aβ imaging. It allows longitudinal imaging studies with follow-up periods of approximately one and a half years and provides a foundation for translational Alzheimer neuroimaging in transgenic mice.

Full-text

Available from: Frauke Neff, Apr 25, 2015
1 Follower
 · 
265 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We aimed to compare [18F]-florbetaben PET imaging in four transgenic mouse strains modelling Alzheimer's disease (AD), with the main focus on APPswe/PS2 mice and C57Bl/6 mice serving as controls (WT). A consistent PET protocol (N = 82 PET scans) was used, with cortical standardized uptake value ratio (SUVR) relative to cerebellum as the endpoint. We correlated methoxy-X04 staining of β-amyloid with PET results, and undertook ex vivo autoradiography for further validation of a partial volume effect correction (PVEC) of PET data. The SUVR in APPswe/PS2 increased from 0.95±0.04 at five months (N = 5) and 1.04±0.03 (p<0.05) at eight months (N = 7) to 1.07±0.04 (p<0.005) at ten months (N = 6), 1.28±0.06 (p<0.001) at 16 months (N = 6) and 1.39±0.09 (p<0.001) at 19 months (N = 6). SUVR was 0.95±0.03 in WT mice of all ages (N = 22). In APPswe/PS1G384A mice, the SUVR was 0.93/0.98 at five months (N = 2) and 1.11 at 16 months (N = 1). In APPswe/PS1dE9 mice, the SUVR declined from 0.96/0.96 at 12 months (N = 2) to 0.91/0.92 at 24 months (N = 2), due to β-amyloid plaques in cerebellum. PVEC reduced the discrepancy between SUVR-PET and autoradiography from -22% to +2% and increased the differences between young and aged transgenic animals. SUVR and plaque load correlated highly between strains for uncorrected (R = 0.94, p<0.001) and PVE-corrected (R = 0.95, p<0.001) data. We find that APPswe/PS2 mice may be optimal for longitudinal amyloid-PET monitoring in planned interventions studies.
    PLoS ONE 02/2015; 10(2):e0116678. DOI:10.1371/journal.pone.0116678 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The purpose of the study was to evaluate the applicability of 18F-labelled amyloid imaging positron emission tomography (PET) agent [18F]flutemetamol to detect changes in brain beta-amyloid (Aβ) deposition in vivo in APP23, Tg2576 and APPswe-PS1dE9 mouse models of Alzheimer's disease. We expected that the high specific activity of [18F]flutemetamol would make it an attractive small animal Aβ imaging agent. Methods: [18F]flutemetamol uptake in the mouse brain was evaluated in vivo at 9 to 22 months of age with an Inveon Multimodality PET/CT camera (Siemens Medical Solutions USA, Knoxville, TN, USA). Retention in the frontal cortex (FC) was evaluated by Logan distribution volume ratios (DVR) and FC/cerebellum (CB) ratios during the late washout phase (50 to 60 min). [18F]flutemetamol binding to Aβ was also evaluated in brain slices by in vitro and ex vivo autoradiography. The amount of Aβ in the brain slices was determined with Thioflavin S and anti-Aβ1−40 immunohistochemistry. Results: In APP23 mice, [18F]flutemetamol retention in the FC increased from 9 to 18 months. In younger mice, DVR and FC/CB50-60 were 0.88 (0.81) and 0.88 (0.89) at 9 months (N = 2), and 0.98 (0.93) at 12 months (N = 1), respectively. In older mice, DVR and FC/CB50-60 were 1.16 (1.15) at 15 months (N = 1), 1.13 (1.16) and 1.35 (1.35) at 18 months (N = 2), and 1.05 (1.31) at 21 months (N = 1). In Tg2576 mice, DVR and FC/CB50-60 showed modest increasing trends but also high variability. In APPswe-PS1dE9 mice, DVR and FC/CB50-60 did not increase with age. Thioflavin S and anti-Aβ1−40 positive Aβ deposits were present in all transgenic mice at 19 to 22 months, and they co-localized with [18F]flutemetamol binding in the brain slices examined with in vitro and ex vivo autoradiography. Conclusions: Increased [18F]flutemetamol retention in the brain was detected in old APP23mice in vivo. However, the high specific activity of [18F]flutemetamol did not provide a notable advantage in Tg2576 and APPswe-PS1dE9 mice compared to the previously evaluated structural analogue [11C]PIB. For its practical benefits, [18F]flutemetamol imaging with a suitable mouse model like APP23 is an attractive alternative.
    08/2014; 4(37). DOI:10.1186/s13550-014-0037-3
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the development of Alzheimer’s disease (AD), changes in gene expression occur at many stages of disease progression. Early changes may be causal, possibly contributing to initial pathology, whereas later changes may be consequential, due to synaptic and neuronal damage. Eventually, amyloid and/or tau deposition and gliosis are thought to result in altered expression of genes including those of the immune system. Although these latter changes have often been thought of as secondary, and therefore of little note, recent analyses have suggested that genetic variability in immune processes, particularly with respect to microglial responses, is important in determining the risk of individuals presenting with the disease. Although mutations in amyloid precursor protein (APP) or presenilin 1 (PSEN1) or PSEN2 that lead to raised levels of a range of amyloidβ (Aβ) peptides are sufficient to result in Alzheimer’s disease in humans, phosphorylation of microtubule-associated protein tau (tau) and the development of tangles is an essential step in the course of the disease. The relative contribution of these two elements to different aspects of the disease is still a matter of controversy.
    Cell Reports 01/2015; 5(4). DOI:10.1016/j.celrep.2014.12.041 · 7.21 Impact Factor