Article

Expression of Tas1 Taste Receptors in Mammalian Spermatozoa: Functional Role of Tas1r1 in Regulating Basal Ca and cAMP Concentrations in Spermatozoa

Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.
PLoS ONE (Impact Factor: 3.53). 02/2012; 7(2):e32354. DOI: 10.1371/journal.pone.0032354
Source: PubMed

ABSTRACT During their transit through the female genital tract, sperm have to recognize and discriminate numerous chemical compounds. However, our current knowledge of the molecular identity of appropriate chemosensory receptor proteins in sperm is still rudimentary. Considering that members of the Tas1r family of taste receptors are able to discriminate between a broad diversity of hydrophilic chemosensory substances, the expression of taste receptors in mammalian spermatozoa was examined.
The present manuscript documents that Tas1r1 and Tas1r3, which form the functional receptor for monosodium glutamate (umami) in taste buds on the tongue, are expressed in murine and human spermatozoa, where their localization is restricted to distinct segments of the flagellum and the acrosomal cap of the sperm head. Employing a Tas1r1-deficient mCherry reporter mouse strain, we found that Tas1r1 gene deletion resulted in spermatogenic abnormalities. In addition, a significant increase in spontaneous acrosomal reaction was observed in Tas1r1 null mutant sperm whereas acrosomal secretion triggered by isolated zona pellucida or the Ca²⁺ ionophore A23187 was not different from wild-type spermatozoa. Remarkably, cytosolic Ca²⁺ levels in freshly isolated Tas1r1-deficient sperm were significantly higher compared to wild-type cells. Moreover, a significantly higher basal cAMP concentration was detected in freshly isolated Tas1r1-deficient epididymal spermatozoa, whereas upon inhibition of phosphodiesterase or sperm capacitation, the amount of cAMP was not different between both genotypes.
Since Ca²⁺ and cAMP control fundamental processes during the sequential process of fertilization, we propose that the identified taste receptors and coupled signaling cascades keep sperm in a chronically quiescent state until they arrive in the vicinity of the egg - either by constitutive receptor activity and/or by tonic receptor activation by gradients of diverse chemical compounds in different compartments of the female reproductive tract.

0 Bookmarks
 · 
111 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Taste receptors were first identified on the tongue, where they initiate a signaling pathway that communicates information to the brain about the nutrient content or potential toxicity of ingested foods. However, recent research has shown that taste receptors are also expressed in a myriad of other tissues, from the airway and gastrointestinal epithelia to the pancreas and brain. The functions of many of these extraoral taste receptors remain unknown, but emerging evidence suggests that bitter and sweet taste receptors in the airway are important sentinels of innate immunity. This review discusses taste receptor signaling, focusing on the G-protein-coupled receptors that detect bitter, sweet, and savory tastes, followed by an overview of extraoral taste receptors and in-depth discussion of studies demonstrating the roles of taste receptors in airway innate immunity. Future research on extraoral taste receptors has significant potential for identification of novel immune mechanisms and insights into host-pathogen interactions.
    Cellular and Molecular Life Sciences CMLS 10/2014; 72(2). DOI:10.1007/s00018-014-1736-7 · 5.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The sense of taste facilitates the recognition of beneficial or potentially harmful food constituents prior to ingestion. For the detection of tastants, epithelial specializations in the oral cavity are equipped with taste receptor molecules that interact with sweet, umami (the taste of l-amino acids), salty, sour, and bitter-tasting substances. Over the past years, numerous tissues in addition to gustatory sensory tissue have been identified to express taste receptor molecules. These findings bear important implications for the roles taste receptors fulfill in vertebrates, which are currently envisioned much broader than thought previously. Taste receptive molecules are present in the brain, respiratory and gastrointestinal tracts, heart, male reproductive tissue, as well as other areas of the body just beginning to emerge. This review summarizes current knowledge on the occurrence and functional implications of taste receptive molecules outside the oral cavity.
    Topics in Medicinal Chemistry, 10/2014; Springer Berlin Heidelberg.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our cellular immune system has to cope constantly with foodborne substances that enter the bloodstream postprandially. Here, they may activate leukocytes via specific but yet mostly unknown receptors. Ectopic RNA expression out of gene families of chemosensory receptors, i.e., the ∼400 ORs, ∼25 TAS2R bitter-taste receptors, and the TAS1R umami- and sweet-taste receptor dimers by which we typically detect foodborne substances, has been reported in a variety of peripheral tissues unrelated to olfaction or taste. In the present study, we have now discovered, by gene-specific RT-PCR experiments, the mRNA expression of most of the Class I ORs (TAS1R) and TAS2R in 5 different types of blood leukocytes. Surprisingly, we did not detect Class II OR mRNA. By RT-qPCR, we show the mRNA expression of human chemosensory receptors and their cow orthologs in PMN, thus suggesting an evolutionary concept. By immunocytochemistry, we demonstrate that some olfactory and taste receptors are expressed, on average, in 40-60% of PMN and T or B cells and largely coexpress in the same subpopulation of PMN. The mRNA expression and the size of subpopulations expressing certain chemosensory receptors varied largely among individual blood samples, suggesting a regulated expression of olfactory and taste receptors in these cells. Moreover, we show mRNA expression of their downstream signaling molecules and demonstrate that PTX abolishes saccharin- or 2-PEA-induced PMN chemotactic migration, indicating a role for Gi-type proteins. In summary, our data suggest "chemosensory"-type subpopulations of circulating leukocytes. © Society for Leukocyte Biology.

Full-text (2 Sources)

Download
31 Downloads
Available from
Jun 2, 2014