Article

ATAC-king the complexity of SAGA during evolution.

Molecular Cancer Research, Netherlands Proteomics Center, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.
Genes & development (Impact Factor: 12.64). 03/2012; 26(6):527-41. DOI: 10.1101/gad.184705.111
Source: PubMed

ABSTRACT The yeast SAGA (Spt-Ada-Gcn5-acetyltransferase) coactivator complex exerts functions in gene expression, including activator interaction, histone acetylation, histone deubiquitination, mRNA export, chromatin recognition, and regulation of the basal transcription machinery. These diverse functions involve distinct modules within this multiprotein complex. It has now become clear that yeast SAGA has diverged during metazoan evolution into two related complexes, SAGA and ATAC, which exist in two flavors in vertebrates. The compositions of metazoan ATAC and SAGA complexes have been characterized, and functional analyses indicate that these complexes have important but distinct roles in transcription, histone modification, signaling pathways, and cell cycle regulation.

Download full-text

Full-text

Available from: Wwm Pim Pijnappel, Nov 15, 2014
0 Followers
 · 
154 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research on the functional properties of nucleosome structure and composition dynamics has revealed that chromatin-level regulation is an essential component of light signalling and clock function in plants, two processes that rely extensively on transcriptional controls. In particular, several types of histone post-translational modifications and chromatin-bound factors act sequentially or in combination to establish transcriptional patterns and to fine-tune the transcript abundance of a large repertoire of light-responsive genes and clock components. Cytogenetic approaches have also identified light-induced higher-order chromatin changes that dynamically organize the condensation of chromosomal domains into sub-nuclear foci containing silenced repeat elements. In this review, we report recently identified molecular actors that establish chromatin state dynamics in response to light signals such as photoperiod, intensity, and spectral quality. We also highlight the chromatin-dependent mechanisms that contribute to the 24-h circadian gene expression and its impact on plant physiology and development. The commonalities and contrasts of light- and clock-associated chromatin-based mechanisms are discussed, with particular emphasis on their impact on the selective regulation and rapid modulation of responsive genes.
    Journal of Experimental Botany 02/2014; DOI:10.1093/jxb/eru011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The basic leucine zipper transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. Previous studies have established that, in response to ER stress, ATF6α translocates to the nucleus and activates transcription of ER stress response genes upon binding sequence specifically to ER stress response enhancer elements in their promoters. In this study, we investigate the biochemical mechanism by which ATF6α activates transcription. By exploiting a combination of biochemical and multidimensional protein identification technology-based mass spectrometry approaches, we have obtained evidence that ATF6α functions at least in part by recruiting to the ER stress response enhancer elements of ER stress response genes a collection of RNA polymerase II coregulatory complexes, including the Mediator and multiple histone acetyltransferase complexes, among which are the Spt-Ada-Gcn5 acetyltransferase (SAGA) and Ada-Two-A-containing (ATAC) complexes. Our findings shed new light on the mechanism of action of ATF6α, and they outline a straightforward strategy for applying multidimensional protein identification technology mass spectrometry to determine which RNA polymerase II transcription factors and coregulators are recruited to promoters and other regulatory elements to control transcription.
    Journal of Biological Chemistry 05/2012; 287(27):23035-45. DOI:10.1074/jbc.M112.369504
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: ADA2 proteins, together with ADA3, SGF9 and GCN5 form the acetyltransferase module of GNAT-type histone acetyltransferase complexes. ADA2b is present in the SAGA complex, which plays roles in various chromatin-related processes via histone H3 modifications and by other mechanisms. RESULTS: In this report we present findings showing that during Drosophila melanogaster development two dADA2b isoforms (dADA2bS and dADA2bL) - which differ in their C-terminal domains - are expressed at various levels. Genetic complementation experiments indicate that dADA2bS alone can support development but cannot fully complement dAda2b mutations. In the presence of dADA2bS, the SAGA-specific histone H3 acetylation level is partially restored in dAda2b mutants. Comparison of whole transcriptome profiles of dAda2b null and dAda2bS transgene-carrier dAda2b null larvae indicates partial overlap between affected genes. mRNA levels corresponding to selected genes which are either up- or down-regulated in dAda2b mutants are altered by dADA2bS expression to different extents, ranging from complete restoration to wild type levels to no restoration at all. The short (dADA2bS) isoform of dADA2b seems to be more capable of restoring lost dSAGA functions that cause mRNA level up-regulation than those that lead to decreased mRNA levels. CONCLUSIONS: The data presented here are in accord with results of genetic complementation experiments, and support the hypothesis that different isoforms of dADA2b contribute to the functional variations of dSAGA multiprotein HAT complexes.
    BMC Genomics 01/2013; 14(1):44. DOI:10.1186/1471-2164-14-44