Thrombelastography-identified coagulopathy is associated with increased morbidity and mortality after traumatic brain injury

Department of Surgery, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L-223, Portland, OR 97239-3098, USA.
American journal of surgery (Impact Factor: 2.41). 03/2012; 203(5):584-8. DOI: 10.1016/j.amjsurg.2011.12.011
Source: PubMed

ABSTRACT The purpose of this study was to determine the relationship between coagulopathy and outcome after traumatic brain injury.
Patients admitted with a traumatic brain injury were enrolled prospectively and admission blood samples were obtained for kaolin-activated thrombelastogram and standard coagulation assays. Demographic and clinical data were obtained for analysis.
Sixty-nine patients were included in the analysis. A total of 8.7% of subjects showed hypocoagulability based on a prolonged time to clot formation (R time, > 9 min). The mortality rate was significantly higher in subjects with a prolonged R time at admission (50.0% vs 11.7%). Patients with a prolonged R time also had significantly fewer intensive care unit-free days (8 vs 27 d), hospital-free days (5 vs 24 d), and increased incidence of neurosurgical intervention (83.3% vs 34.9%).
Hypocoagulability as shown by thrombelastography after traumatic brain injury is associated with worse outcomes and an increased incidence of neurosurgical intervention.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose Coagulation changes in pediatric trauma patients are not well defined. To fill this gap, we tested the hypothesis that trauma evokes a hypercoagulable response. Methods A prospective observational study was conducted in hospitalized patients (age 8 months to 14 years) admitted for trauma or elective surgery. Informed consent was obtained from the parents and informed assent was obtained in patients 7 years of age or older. Coagulation changes were evaluated on fresh whole blood using thromboelastography (TEG) and on stored plasma using assays for special clotting factors. Results Forty three patients (22 trauma, median injury severity score = 9; and 21 uninjured controls) were evaluated. With trauma vs control, prothrombin time (PT) was higher by about 10% (p < 0.001), but activated partial thromboplastin time was not altered. TEG clotting time (R; p = 0.005)) and fibrin cross-linking were markedly accelerated (K time, alpha angle; p < 0.001) relative to the control patients. D-Dimer, Prothrombin Fragment 1 + 2, and Plasminogen Activator Inhibitor-1 were all elevated, whereas Protein S activity was reduced (all p < 0.01). Importantly, a large fraction of TEG values and clotting factor assays in the pediatric control group were outside the published reference ranges for adults. Conclusion A hypercoagulable state is associated with minor trauma in children. More work is needed to determine the functional significance of these changes and to establish normal pediatric reference ranges.
    Journal of Pediatric Surgery 08/2014; 49(8):1295-9. DOI:10.1016/j.jpedsurg.2013.11.050 · 1.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prehospital management affects long-term outcome of patients with severe traumatic brain injury (TBI). This article reviews the current concepts and ongoing controversies of prehospital treatment of severe TBI. Prehospital management focuses on the prevention of secondary brain injury and rapid transport to a neurotrauma center for definitive diagnosis and life- as well as brain-saving emergency treatment such as decompressive craniotomy. There is a broad consensus that adequate airway management, prevention of hypoxia, hypocapnia or hypercapnia, prevention of hypotension and control of hemorrhage represent preclinical therapeutic modalities that may contribute to improved survival in severe TBI. The precise role of prehospital endotracheal intubation, osmotic agents and early therapeutic hypothermia needs to be clarified in the context of time required for transportation, local infrastructure, geographical factors and availability of experienced emergency teams. Prehospital management of TBI remains challenging. There are no universal objectives suitable to all patients. Randomized, controlled clinical trials are necessary for developing optimal protocols for paramedic and physician emergency medical teams.
    Current opinion in anaesthesiology 07/2012; 25(5):556-62. DOI:10.1097/ACO.0b013e328357225c · 2.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: Evidence-based recommendations are needed to guide the acute management of the bleeding trauma patient, which when implemented may improve patient outcomes. METHODS: The multidisciplinary Task Force for Advanced Bleeding Care in Trauma was formed in 2005 with the aim of developing a guideline for the management of bleeding following severe injury. This document represents an updated version of the guideline published by the group in 2007 and updated in 2010. Recommendations were formulated using a nominal group process, the Grading of Recommendations Assessment, Development and Evaluation (GRADE) hierarchy of evidence and based on a systematic review of published literature. RESULTS: Key changes encompassed in this version of the guideline include new recommendations on the appropriate use of vasopressors and inotropic agents, and reflects an awareness of the growing number of patients in the population at large treated with antiplatelet agents and/or oral anticoagulants. The current guideline also includes recommendations and a discussion of thromboprophylactic strategies for all patients following traumatic injury. The most significant addition is a new section that discusses the need for every institution to develop, implement and adhere to an evidence-based clinical protocol to manage traumatically injured patients. The remaining recommendations have been re-evaluated and graded based on literature published since the last edition of the guideline. Consideration was also given to changes in clinical practice that have taken place during this time period as a result of both new evidence and changes in the general availability of relevant agents and technologies. CONCLUSIONS: A comprehensive, multidisciplinary approach to trauma care and mechanisms with which to ensure that established protocols are consistently implemented will ensure a uniform and high standard of care across Europe and beyond.
    Critical care (London, England) 04/2013; 17(2):R76. DOI:10.1186/cc12685