Leucyl-tRNA synthetase controls TORC1 via the EGO complex.

Department of Biology, Division of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland.
Molecular cell (Impact Factor: 14.46). 03/2012; 46(1):105-10. DOI: 10.1016/j.molcel.2012.02.009
Source: PubMed

ABSTRACT The target of rapamycin complex 1 (TORC1) is an essential regulator of eukaryotic cell growth that responds to growth factors, energy levels, and amino acids. The mechanisms through which the preeminent amino acid leucine signals to the TORC1-regulatory Rag GTPases, which activate TORC1 within the yeast EGO complex (EGOC) or the structurally related mammalian Rag-Ragulator complex, remain elusive. We find that the leucyl-tRNA synthetase (LeuRS) Cdc60 interacts with the Rag GTPase Gtr1 of the EGOC in a leucine-dependent manner. This interaction is necessary and sufficient to mediate leucine signaling to TORC1 and is disrupted by the engagement of Cdc60 in editing mischarged tRNA(Leu). Thus, the EGOC-TORC1 signaling module samples, via the LeuRS-intrinsic editing domain, the fidelity of tRNA(Leu) aminoacylation as a proxy for leucine availability.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, isn't subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3/Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treating cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation, growth in a poor, derepressive medium, Msx or rapamycin treatment or in a ure2Δ is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation, growth in proline medium or a ure2Δ, does not require tRNACUG for its response to rapamycin. Also in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3/Gat1 localization and their downstream production of nitrogenous precursors. This component is highly sensitive to the function of the rare glutamine tRNACUG, which cannot be replaced by the predominant glutamine tRNACAA. Our observations also demonstrate distinct mechanistic differences between the responses of Gln3 and Gat1 to rapamycin inhibition of TorC1 and nitrogen starvation. Copyright © 2014, The Genetics Society of America.
    Genetics 12/2014; 199(2). DOI:10.1534/genetics.114.173831 · 4.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ras homolog enriched in brain (Rheb) is critical for mechanistic target of rapamycin complex 1 (mTORC1) activation in response to growth factors and amino acids (AAs). Whereas growth factors inhibit the tuberous sclerosis complex (TSC1-TSC2), a negative Rheb regulator, the role of AAs in Rheb activation remains unknown. Here, we identify microspherule protein 1 (MCRS1) as the essential link between Rheb and mTORC1 activation. MCRS1, in an AA-dependent manner, maintains Rheb at lysosome surfaces, connecting Rheb to mTORC1. MCRS1 suppression in human cancer cells using small interference RNA or mouse embryonic fibroblasts using an inducible-Cre/Lox system reduces mTORC1 activity. MCRS1 depletion promotes Rheb/TSC2 interaction, rendering Rheb inactive and delocalizing it from lysosomes to recycling endocytic vesicles, leading to mTORC1 inactivation. These findings have important implications for signaling mechanisms in various pathologies, including diabetes mellitus and cancer. Copyright © 2015 Elsevier Inc. All rights reserved.
    Developmental Cell 03/2015; 33(1). DOI:10.1016/j.devcel.2015.02.010 · 10.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amino acid (AA) is a potent mitogen that controls growth and metabolism. Here we describe the identification of Rab1 as a conserved regulator of AA signaling to mTORC1. AA stimulates Rab1A GTP binding and interaction with mTORC1 and Rheb-mTORC1 interaction in the Golgi. Rab1A overexpression promotes mTORC1 signaling and oncogenic growth in an AA- and mTORC1-dependent manner. Conversely, Rab1A knockdown selectively attenuates oncogenic growth of Rab1-overexpressing cancer cells. Moreover, Rab1A is overexpressed in colorectal cancer (CRC), which is correlated with elevated mTORC1 signaling, tumor invasion, progression, and poor prognosis. Our results demonstrate that Rab1 is an mTORC1 activator and an oncogene and that hyperactive AA signaling through Rab1A overexpression drives oncogenesis and renders cancer cells prone to mTORC1-targeted therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

Full-text (3 Sources)

Available from
Sep 10, 2014