Leucyl-tRNA synthetase controls TORC1 via the EGO complex.

Department of Biology, Division of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland.
Molecular cell (Impact Factor: 14.46). 03/2012; 46(1):105-10. DOI: 10.1016/j.molcel.2012.02.009
Source: PubMed

ABSTRACT The target of rapamycin complex 1 (TORC1) is an essential regulator of eukaryotic cell growth that responds to growth factors, energy levels, and amino acids. The mechanisms through which the preeminent amino acid leucine signals to the TORC1-regulatory Rag GTPases, which activate TORC1 within the yeast EGO complex (EGOC) or the structurally related mammalian Rag-Ragulator complex, remain elusive. We find that the leucyl-tRNA synthetase (LeuRS) Cdc60 interacts with the Rag GTPase Gtr1 of the EGOC in a leucine-dependent manner. This interaction is necessary and sufficient to mediate leucine signaling to TORC1 and is disrupted by the engagement of Cdc60 in editing mischarged tRNA(Leu). Thus, the EGOC-TORC1 signaling module samples, via the LeuRS-intrinsic editing domain, the fidelity of tRNA(Leu) aminoacylation as a proxy for leucine availability.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ras homolog enriched in brain (Rheb) is critical for mechanistic target of rapamycin complex 1 (mTORC1) activation in response to growth factors and amino acids (AAs). Whereas growth factors inhibit the tuberous sclerosis complex (TSC1-TSC2), a negative Rheb regulator, the role of AAs in Rheb activation remains unknown. Here, we identify microspherule protein 1 (MCRS1) as the essential link between Rheb and mTORC1 activation. MCRS1, in an AA-dependent manner, maintains Rheb at lysosome surfaces, connecting Rheb to mTORC1. MCRS1 suppression in human cancer cells using small interference RNA or mouse embryonic fibroblasts using an inducible-Cre/Lox system reduces mTORC1 activity. MCRS1 depletion promotes Rheb/TSC2 interaction, rendering Rheb inactive and delocalizing it from lysosomes to recycling endocytic vesicles, leading to mTORC1 inactivation. These findings have important implications for signaling mechanisms in various pathologies, including diabetes mellitus and cancer. Copyright © 2015 Elsevier Inc. All rights reserved.
    Developmental Cell 03/2015; 33(1). DOI:10.1016/j.devcel.2015.02.010 · 10.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells constantly adapt to various environmental changes and stresses. The way in which nutrient and stress levels in a cell feed back to control metabolism and growth are, unsurprisingly, extremely complex, as responding with great sensitivity and speed to the 'feast or famine, slack or stress' status of its environment is a central goal for any organism. The highly conserved target of rapamycin complex 1 (TORC1) controls eukaryotic cell growth and response to a variety of signals, including nutrients, hormones and stresses, and plays the key role in the regulation of autophagy. A lot of attention has been paid recently to the factors in this pathway functioning upstream of TORC1. In this Commentary, we focus on a major, newly discovered upstream regulator of TORC1 - the multiprotein SEA complex, also known as GATOR. We describe the structural and functional features of the yeast complex and its mammalian homolog, and their involvement in the regulation of the TORC1 pathway and TORC1-independent processes. We will also provide an overview of the consequences of GATOR deregulation in cancer and other diseases. © 2015. Published by The Company of Biologists Ltd.
    Journal of Cell Science 05/2015; DOI:10.1242/jcs.168922 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In multicellular organisms, the mechanisms by which diverse cell types acquire distinct amino acids and how cellular function adapts to their availability are fundamental questions in biology. We found that increased neutral essential amino acid (NEAA) uptake was a critical component of erythropoiesis. As red blood cells matured, expression of the amino acid transporter gene Lat3 increased, which increased NEAA import. Inadequate NEAA uptake by pharmacologic inhibition or RNAi-mediated knockdown of LAT3 triggered a specific reduction in hemoglobin production in zebrafish embryos and murine erythroid cells through the mTORC1 (mammalian target of rapamycin complex 1)/4E-BP (eukaryotic translation initiation factor 4E-binding protein) pathway. CRISPR-mediated deletion of members of the 4E-BP family in murine erythroid cells rendered them resistant to mTORC1 and LAT3 inhibition and restored hemoglobin production. These results identify a developmental role for LAT3 in red blood cells and demonstrate that mTORC1 serves as a homeostatic sensor that couples hemoglobin production at the translational level to sufficient uptake of NEAAs, particularly l-leucine. Copyright © 2015, American Association for the Advancement of Science.
    Science Signaling 04/2015; 8(372):ra34. DOI:10.1126/scisignal.aaa5903 · 7.65 Impact Factor

Full-text (3 Sources)

Available from
Sep 10, 2014