Article

ArfGAP1 is a GTPase activating protein for LRRK2: reciprocal regulation of ArfGAP1 by LRRK2

Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 03/2012; 32(11):3877-86. DOI: 10.1523/JNEUROSCI.4566-11.2012
Source: PubMed

ABSTRACT Both sporadic and autosomal dominant forms of Parkinson's disease (PD) have been causally linked to mutations in leucine-rich repeat kinase 2 (LRRK2), a large protein with multiple domains. The kinase domain plays an important role in LRRK2-mediated toxicity. Although a number of investigations have focused on LRRK2 kinase activity, less is known about the GTPase function of LRRK2. The activity of GTPases is regulated by GTPase activating proteins (GAPs) and GTP exchange factors. Here, we identify ArfGAP1 as the first GAP for LRRK2. ArfGAP1 binds LRRK2 predominantly via the WD40 and kinase domain of LRRK2, and it increases LRRK2 GTPase activity and regulates LRRK2 toxicity both in vitro and in vivo in Drosophila melanogaster. Unexpectedly, ArfGAP1 is an LRRK2 kinase substrate whose GAP activity is inhibited by LRRK2, whereas wild-type and G2019S LRRK2 autophosphorylation and kinase activity are significantly reduced in the presence of ArfGAP1. Overexpressed ArfGAP1 exhibits toxicity that is reduced by LRRK2 both in vitro and in vivo. Δ64-ArfGAP1, a dominant-negative ArfGAP1, and shRNA knockdown of ArfGAP1 reduce LRRK2 toxicity. Thus, LRRK2 and ArfGAP1 reciprocally regulate the activity of each other. Our results provide insight into the basic pathobiology of LRRK2 and indicate an important role for the GTPase domain and ArfGAP1 in LRRK2-mediated toxicity. These data suggest that agents targeted toward regulation of LRRK2 GTP hydrolysis might be therapeutic agents for the treatment of PD.

0 Followers
 · 
146 Views
  • Source
    • "It is possible that GTPase activating proteins (GAPs) and GTP exchange factors may help regulate LRRK2 function. ArfGAP1 has been shown to enhance the LRRK2 GTPase in Drosophila melanogaster (Xiong et al., 2012). Interestingly, the same authors had previously suggested that LRRK2 toxicity in yeast can be modulated by altering GTPase activity (Xiong et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Leucine-rich repeat kinase 2 (LRRK2) is a large, ubiquitous protein of unknown function. Mutations in the gene encoding LRRK2 have been linked to familial and sporadic Parkinson disease (PD) cases. The LRRK2 protein is a single polypeptide that displays GTPase and kinase activity. Kinase and GTPase domains are involved in different cellular signalling pathways. Despite several experimental studies associating LRRK2 protein with various intracellular membranes and vesicular structures such as endosomal/lysosomal compartments, the mitochondrial outer membrane, lipid rafts, microtubule-associated vesicles, the golgi complex, and the endoplasmic reticulum its broader physiologic function(s) remain unidentified. Additionally, the cellular distribution of LRRK2 may indicate its role in several different pathways, such as the ubiquitin-proteasome system, the autophagic-lysosomal pathway, intracellular trafficking, and mitochondrial dysfunction. This review discusses potential mechanisms through which LRRK2 may mediate neurodegeneration and cause PD.
    Experimental Neurology 06/2014; 261. DOI:10.1016/j.expneurol.2014.05.025 · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are dynamic organelles which are essential for many cellular processes, such as ATP production by oxidative phosphorylation, lipid metabolism, assembly of iron sulfur clusters, regulation of calcium homeostasis, and cell death pathways. The dynamic changes in mitochondrial morphology, connectivity, and subcellular distribution are critically dependent on a highly regulated fusion and fission machinery. Mitochondrial function, dynamics, and quality control are vital for the maintenance of neuronal integrity. Indeed, there is mounting evidence that mitochondrial dysfunction plays a central role in several neurodegenerative diseases. In particular, the identification of genes linked to rare familial variants of Parkinson's disease has fueled research on mitochondrial aspects of the disease etiopathogenesis. Studies on the function of parkin and PINK1, which are associated with autosomal recessive parkinsonism, provided compelling evidence that these proteins can functionally interact to maintain mitochondrial integrity and to promote clearance of damaged and dysfunctional mitochondria. In this review we will summarize current knowledge about the impact of parkin and PINK1 on mitochondria.
    Acta Neuropathologica 11/2011; 123(2):173-88. DOI:10.1007/s00401-011-0902-3 · 10.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is caused by the progressive degeneration of dopaminergic neurons in the substantia nigra. Although the etiology for most PD remains elusive, the identification of specific genetic defects in familial cases of PD and the signaling pathways governed by these genes has provided tremendous insight into PD pathogenesis. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are frequently found in familial and sporadic PD. Although current knowledge regarding the regulatory mechanisms of LRRK2 activation is limited, it is becoming increasingly evident that aberrant kinase activity of the pathologic mutants of LRRK2 is associated with neurodegeneration, suggesting that the kinase activity of LRRK2 is a potential therapeutic target. In addition, LRRK2 inhibitors might provide valuable tools to understand the pathophysiological and physiological roles of LRRK2 as well as the etiology of PD. We discuss here the potential and feasibility of targeting LRRK2 as a therapeutic strategy for PD.
    Trends in Pharmacological Sciences 05/2012; 33(7):365-73. DOI:10.1016/j.tips.2012.04.001 · 9.99 Impact Factor
Show more

Preview

Download
0 Downloads
Available from