Spontaneous firing and evoked responses of spinal nociceptive neurons are attenuated by blockade of P2X3 and P2X2/3 receptors in inflamed rats.

Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064-6118, USA.
Journal of Neuroscience Research (Impact Factor: 2.73). 03/2012; 90(8):1597-606. DOI: 10.1002/jnr.23042
Source: PubMed

ABSTRACT P2X3 and P2X2/3 receptors are selectively expressed on primary afferent nociceptors and have been implicated in modulating nociception in different models of pathological pain, including inflammatory pain. In an effort to delineate further the role of P2X3 receptors (homomeric and heteromeric) in the modulation of nociceptive transmission after a chronic inflammation injury, A-317491, a potent and selective P2X3-P2X2/3 antagonist, was administered to CFA-inflamed rats in order to examine its effects on responses of spinal dorsal horn neurons to mechanical and thermal stimulation. Systemic injection of A-317491 (30 μmol/kg, i.v.) reduced the responses of wide-dynamic-range (WDR) and nociceptive specific (NS) neurons to both high-intensity mechanical (pinch) and heat (49°C) stimulation. A-317491 also decreased low-intensity (10 g von Frey hair) mechanically evoked activity of WDR neurons but did not alter WDR neuronal responses to cold stimulation (5°C). Spontaneous firing of WDR neurons in CFA-inflamed rats was also significantly attenuated by A-317491 injection. By using immunohistochemistry, P2X3 receptors were demonstrated to be enhanced in lamina II of the spinal dorsal horn after inflammation. In summary, blockade of P2X3 and P2X2/3 receptors dampens mechanical- and heat-related signaling, as well as nonevoked activity of key classes of spinal nociceptive neurons in inflamed animals. These data suggest that P2X3 and/or P2X2/3 receptors have a broad contribution to somatosensory/nociceptive transmission in rats with a chronic inflammatory injury and are consistent with previous behavioral data demonstrating antiallodynic and antihyperalgesic effects of receptor antagonists.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purinergic system is highly involved in the regulation of microglial physiological processes. In addition to the accepted roles for the P2 X4,7 and P2 Y12 receptors activated by adenosine triphosphate (ATP) and adenosine diphosphate, respectively, recent evidence suggests a role for the adenosine A2A receptor in microglial cytoskeletal rearrangements. However, the expression and function of adenosine A1 receptor (A1AR) in microglia is still unclear. Several reports have demonstrated possible expression of A1AR in microglia, but a new study has refuted such evidence. In this study, we investigated the presence and function of A1AR in microglia using biomolecular techniques, live microscopy, live calcium imaging, and in vivo electrophysiological approaches. The aim of this study was to clarify the expression of A1AR in microglia and to highlight its possible roles. We found that microglia express A1AR and that it is highly upregulated upon ATP treatment. Moreover, we observed that selective stimulation of A1AR inhibits the morphological activation of microglia, possibly by suppressing the Ca(2+) influx induced by ATP treatment. Finally, we recorded the spontaneous and evoked activity of spinal nociceptive-specific neuron before and after application of resting or ATP-treated microglia, with or without preincubation with a selective A1AR agonist. We found that the microglial cells, pretreated with the A1AR agonist, exhibit lower capability to facilitate the nociceptive neurons, as compared with the cells treated with ATP alone. GLIA 2014;62:122-132.
    Glia 01/2014; 62(1):122-132. · 5.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: P2X is a family of ligand-gated ion channels that act through adenosine ATP. The P2X3 receptor plays a key role in the transmission of neuropathic pain at peripheral and spinal sites. Electroacupuncture (EA) has been used to treat neuropathic pain effectively. To determine the role of EA in neuropathic pain mediated through the P2X3 receptor in dorsal root ganglion neurons and the spinal cord, a chronic constriction injury (CCI) model was used. Sprague-Dawley rats were divided into four groups: sham CCI, CCI, CCI plus contralateral EA, and CCI plus ipsilateral EA. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were recorded. Furthermore, the expression of the P2X3 receptor was evaluated through Western blotting and immunofluorescence. The effects of EA and A-317491 were investigated through the whole-cell patch-clamp method and intrathecal administration. Our results show that the MWT and TWL of EA groups were higher than those in the CCI group, whereas the expression of the P2X3 receptor was lower than that in the CCI group. However, no significant difference was detected between the two EA groups. EA depressed the currents created by ATP and the upregulation of the P2X3 receptor in CCI rats. Additionally, EA was more potent in reducing mechanical allodynia and thermal hyperalgesia when combined with A-317491 through intrathecal administration. These results show that both contralateral and ipsilateral EA might inhibit the primary afferent transmission of neuropathic pain induced through the P2X3 receptor. In addition, EA and A-317491 might have an additive effect in inhibiting the transmission of pain mediated by the P2X3 receptor. © 2014 Wiley Periodicals, Inc.
    Journal of Neuroscience Research 07/2014; · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ATP-gated P2X3 receptors are mostly expressed by nociceptive sensory neurons and participate in transduction of pain signals. P2X3 receptors show a combination of fast desensitization onset and slow recovery. Moreover, even low nanomolar agonist concentrations unable to evoke a response, can induce desensitization via a phenomenon called "high affinity desensitization." We have also observed that recovery from desensitization is agonist-specific and can range from seconds to minutes. The recovery process displays unusually high temperature dependence. Likewise, recycling of P2X3 receptors in peri-membrane regions shows unexpectedly large temperature sensitivity. By applying kinetic modeling, we have previously shown that desensitization characteristics of P2X3 receptor are best explained with a cyclic model of receptor operation involving three agonist molecules binding a single receptor and that desensitization is primarily developing from the open receptor state. Mutagenesis experiments suggested that desensitization depends on a certain conformation of the ATP binding pocket and on the structure of the transmembrane domains forming the ion pore. Further molecular determinants of desensitization have been identified by mutating the intracellular N- and C-termini of P2X3 receptor. Unlike other P2X receptors, the P2X3 subtype is facilitated by extracellular calcium that acts via specific sites in the ectodomain neighboring the ATP binding pocket. Thus, substitution of serine275 in this region (called "left flipper") converts the natural facilitation induced by extracellular calcium to receptor inhibition. Given their strategic location in nociceptive neurons and unique desensitization properties, P2X3 receptors represent an attractive target for development of new analgesic drugs via promotion of desensitization aimed at suppressing chronic pain.
    Frontiers in Cellular Neuroscience 01/2013; 7:245. · 4.18 Impact Factor