Article

Prostate Cancer Chemoprevention Targeting High Risk Populations: Model for Trial Design and Outcome Measures.

Department of Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, College of Medicine, Tampa, Florida.
Journal of Cancer Science and Therapy 01/2012; 2011(S3).
Source: PubMed

ABSTRACT Inspite of the large number of promising nutrient-derived agents demonstrating promise as potential chemopreventive agents, most have failed to prove effectiveness in clinical trials. Critical requirements for moving nutrient-derived agents to recommendation for clinical use include adopting a systematic, molecular-mechanism based approach and utilizing the same ethical and rigorous methods such as are used to evaluate other pharmacological agents. Preliminary data on a mechanistic rationale for chemoprevention activity as observed from epidemiological, in vitro and preclinical studies, phase I data of safety in high-risk cohorts are required to inform design of phase II clinical trials. Additionally, a valid panel of biomarkers representing the hypothesized carcinogenesis pathway for measuring efficacy must be utilized to evaluate effectiveness in these trials. The goal of this paper is to provide a model, using a systematic approach for evaluating the safety, effectiveness and mechanism of action of a well characterized nutrient-derived agent-isoflavones - in a phase II clinical trial for prostate cancer (CaP) chemoprevention, targeting a population of African American (AA) and Caucasian men. Based on our previous observations, we hypothesize that the effects of isoflavones on prostate carcinogenesis are mainly mediated through the down regulation of androgen receptor (AR) and AR activity in AA men is higher due to its shorter length of Glutamine repeats in its N-terminus. We thus believe that isoflavones will exert a stronger protective effect for CaP in AA men and cause a higher activation of FOXO factors and their target genes. The aim of the study is to evaluate the comparative effectiveness of the study agent and placebo, in addition to a comparison of the effectiveness and safety in African American men compared to Caucasian men treated with this agent.

0 Followers
 · 
188 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A naturally occurring benzofuran derivative, Ebenfuran III (Eb III) was investigated for its antiproliferative effects using the DU-145 prostate cell line. Eb III was isolated from Onobrychis ebenoides of the Leguminosae family, a plant endemic in Central and Southern Greece. We have previously reported that Eb III exerts significant cytotoxic effects on certain cancer cell lines. This effect is thought to occur via the isoprenyl moiety at the C-5 position of the molecule. The study aim was to gain a deeper understanding of the pharmacological effect of Eb III on DU-145 cell death at the translational level using a relative quantitative and temporal proteomics approach. Proteins extracted from the cell pellets were subjected to solution phase trypsin proteolysis followed by iTRAQ-labelling. The labelled tryptic peptide extracts were then fractionated using strong cation exchange chromatography and the fractions were analyzed by nano-flow reverse phase ultra-performance liquid chromatography- nano-electrospray ionization-tandem mass spectrometry analysis using a hybrid QqTOF platform. Using this approach, we compared the expression levels of 1360 proteins analysed at ≤ 1% global protein false discovery rate (FDR), commonly present in untreated (control, vehicle only) and Eb III-treated cells at the different exposure time points. Through the iterative use of Ingenuity Pathway Analysis with hierarchical clustering of protein expression patterns, followed by bibliographic research, the temporal regulation of the Calpain-1, ERK2, PAR-4, RAB-7, and Bap31 proteins, were identified as potential nodes of multi-pathway convergence to Eb III induced DU-145 cell death. These proteins were further verified with Western blot analysis. This gel-free, quantitative 2DLC-MS-MS proteomics method effectively captured novel modulated proteins in the DU-145 cell line as a response to Eb III treatment. This approach also provided greater insight to the multifocal and combinatorial signaling pathways implicated in Eb III-induced cell death.
    Journal of Proteome Research 02/2013; 12(4). DOI:10.1021/pr300968q · 5.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the evolving evidence of the promise of botanicals/biologics for cancer chemoprevention and treatment, an Indo-U.S. collaborative Workshop focusing on “Accelerating Botanicals Agent Development Research for Cancer Chemoprevention and Treatment” was conducted at the Moffitt Cancer Center, 29–31 May 2012. Funded by the Indo-U.S. Science and Technology Forum, a joint initiative of Governments of India and the United States of America and the Moffitt Cancer Center, the overall goals of this workshop were to enhance the knowledge (agents, molecular targets, biomarkers, approaches, target populations, regulatory standards, priorities, resources) of a multinational, multidisciplinary team of researcher's to systematically accelerate the design, to conduct a successful clinical trials to evaluate botanicals/biologics for cancer chemoprevention and treatment, and to achieve efficient translation of these discoveries into the standards for clinical practice that will ultimately impact cancer morbidity and mortality. Expert panelists were drawn from a diverse group of stakeholders, representing the leadership from the National Cancer Institute's Office of Cancer Complementary and Alternative Medicine (OCCAM), NCI Experimental Therapeutics (NExT), Food and Drug Administration, national scientific leadership from India, and a distinguished group of population, basic and clinical scientists from the two countries, including leaders in bioinformatics, social sciences, and biostatisticians. At the end of the workshop, we established four Indo-U.S. working research collaborative teams focused on identifying and prioritizing agents targeting four cancers that are of priority to both countries. Presented are some of the key proceedings and future goals discussed in the proceedings of this workshop.
    Cancer Medicine 02/2013; 2(1):108-15. DOI:10.1002/cam4.42
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In spite of the large number of botanicals demonstrating promise as potential cancer chemopreventive agents, most have failed to prove effectiveness in clinical trials. Critical requirements for moving botanical agents to recommendation for clinical use include adopting a systematic, molecular-target based approach and utilizing the same ethical and rigorous methods that are used to evaluate other pharmacological agents. Preliminary data on a mechanistic rationale for chemoprevention activity as observed from epidemiological, in vitro and preclinical studies, phase I data of safety in suitable cohorts, duration of intervention based on time to progression of pre-neoplastic disease to cancer and using a valid panel of biomarkers representing the hypothesized carcinogenesis pathway for measuring efficacy must inform the design of clinical trials. Botanicals have been shown to influence multiple biochemical and molecular cascades that inhibit mutagenesis, proliferation, induce apoptosis, suppress the formation and growth of human cancers, thus modulating several hallmarks of carcinogenesis. These agents appear promising in their potential to make a dramatic impact in cancer prevention and treatment, with a significantly superior safety profile than most agents evaluated to date. The goal of this paper is to provide models of translational research based on the current evidence of promising botanicals with a specific focus on targeted therapies for PCa chemoprevention.
    12/2012; Suppl 2:005. DOI:10.4172/2161-1025.S2-005

Full-text (2 Sources)

Download
24 Downloads
Available from
May 22, 2014