Irradiation-induced protein inactivation reveals Golgi enzyme cycling to cell periphery

Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA 15213, USA.
Journal of Cell Science (Impact Factor: 5.33). 03/2012; 125(Pt 4):973-80. DOI: 10.1242/jcs.094441
Source: PubMed

ABSTRACT Acute inhibition is a powerful technique to test proteins for direct roles and order their activities in a pathway, but as a general gene-based strategy, it is mostly unavailable in mammalian systems. As a consequence, the precise roles of proteins in membrane trafficking have been difficult to assess in vivo. Here we used a strategy based on a genetically encoded fluorescent protein that generates highly localized and damaging reactive oxygen species to rapidly inactivate exit from the endoplasmic reticulum (ER) during live-cell imaging and address the long-standing question of whether the integrity of the Golgi complex depends on constant input from the ER. Light-induced blockade of ER exit immediately perturbed Golgi membranes, and surprisingly, revealed that cis-Golgi-resident proteins continuously cycle to peripheral ER-Golgi intermediate compartment (ERGIC) membranes and depend on ER exit for their return to the Golgi. These experiments demonstrate that ER exit and extensive cycling of cis-Golgi components to the cell periphery sustain the mammalian Golgi complex.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromophore-assisted laser or light inactivation (CALI) has been employed as a promising technique to achieve spatiotemporal knockdown or loss-of-function of target molecules in situ. CALI is performed using photosensitizers as generators of reactive oxygen species (ROS). There are two CALI approaches that use either transgenic tags with chemical photosensitizers, or genetically encoded fluorescent protein fusions. Using spatially restricted microscopy illumination, CALI can address questions regarding, for example, protein isoforms, subcellular localization or phase-specific analyses of multifunctional proteins that other knockdown approaches, such as RNA interference or treatment with chemicals, cannot. Furthermore, rescue experiments can clarify the phenotypic capabilities of CALI after the depletion of endogenous targets. CALI can also provide information about individual events that are involved in the function of a target protein and highlight them in multifactorial events. Beyond functional analysis of proteins, CALI of nuclear proteins can be performed to induce cell cycle arrest, chromatin- or locus-specific DNA damage. Even at organelle level - such as in mitochondria, the plasma membrane or lysosomes - CALI can trigger cell death. Moreover, CALI has emerged as an optogenetic tool to switch off signaling pathways, including the optical depletion of individual neurons. In this Commentary, we review recent applications of CALI and discuss the utility and effective use of CALI to address open questions in cell biology.
    Journal of Cell Science 04/2014; 127(Pt 8):1621-1629. DOI:10.1242/jcs.144527 · 5.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rab proteins, small GTPases, are key regulators of mammalian Golgi apparatus organization. Based on the effect of Rab activation state, Rab proteins fall into two functional classes. In Class1, inactivation induces Golgi ribbon fragmentation and/or redistribution of Golgi enzymes to the Endoplasmic Reticulum, while overexpression of wild type or activation has little, if any, effect on Golgi ribbon organization. In Class 2, the reverse is true. We give emphasis to Rab6, the most abundant Golgi-associated Rab protein. Rab6 depletion in HeLa cells causes an increase in Golgi cisternal number, longer, more continuous cisternae, and a pronounced accumulation of vesicles; the effect of Rab6 on Golgi ribbon organization is probably through regulation of vesicle transport. In effector studies, motor proteins and their regulators are found to be key Rab6 effectors. A related Rab, Rab41, affects Golgi ribbon organization in a contrasting manner. The balance between minus- and plus-end directed motor recruitment may well be the major Rab-dependent factor in Golgi ribbon organization. Copyright © 2015 Elsevier Inc. All rights reserved.
    International review of cell and molecular biology 01/2015; 315:1-22. DOI:10.1016/bs.ircmb.2014.12.002 · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homotypic membrane tethering by the GRASP proteins is required for the lateral linkage of mammalian Golgi ministacks into a ribbon-like membrane network. Although GRASP65 and GRASP55 are specifically localized to cis and medial/trans cisternae, respectively, it is unknown whether each GRASP mediates cisternae-specific tethering and whether such specificity is necessary for Golgi compartmentalization. Here, each GRASP was tagged with KillerRed (KR), expressed in HeLa cells, and inhibited by a 1 min exposure to light. Significantly, inactivation of either GRASP unlinked the Golgi ribbon, and the immediate effect of GRASP65-KR inactivation was a loss of cis rather than trans Golgi integrity, whereas inactivation of GRASP55-KR first affected the trans and not the cis Golgi. Thus, each GRASP appears to play a direct and cisternae specific role in linking ministacks into a continuous membrane network. To test the consequence of loss of cisternae specific tethering, we generated Golgi membranes with a single GRASP on all cisternae. Remarkably, the membranes exhibited the full connectivity of wildtype Golgi ribbons but were decompartmentalized and defective in glycan processing. Thus, the GRASP isoforms specifically link analogous cisternae to ensure Golgi compartmentalization and proper processing.
    Molecular biology of the cell 11/2013; DOI:10.1091/mbc.E13-07-0395 · 5.98 Impact Factor