β-Catenin-SOX2 signaling regulates the fate of developing airway epithelium.

Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, 106 Research Drive, 2075 MSRBII, DUMC Box 103000, Durham, NC, 27710, USA.
Journal of Cell Science (Impact Factor: 5.33). 03/2012; 125(Pt 4):932-42. DOI: 10.1242/jcs.092734
Source: PubMed

ABSTRACT Wnt-β-catenin signaling regulates cell fate during organ development and postnatal tissue maintenance, but its contribution to specification of distinct lung epithelial lineages is still unclear. To address this question, we used a Cre recombinase (Cre)-LoxP approach to activate canonical Wnt signaling ectopically in developing lung endoderm. We found that persistent activation of canonical Wnt signaling within distal lung endoderm was permissive for normal development of alveolar epithelium, yet led to the loss of developing bronchiolar epithelium and ectasis of distal conducting airways. Activation of canonical Wnt led to ectopic expression of a lymphoid-enhancing factor and a T-cell factor (LEF and TCF, respectively) and absence of SRY (sex-determining region Y)-box 2 (SOX2) and tumor protein p63 (p63) expression in proximal derivatives. Conditional loss of SOX2 in airways phenocopied epithelial differentiation defects observed with ectopic activation of canonical Wnt. Our data suggest that Wnt negatively regulates a SOX2-dependent signaling program required for developmental progression of the bronchiolar lineage.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Claudins are transmembrane proteins expressed in tight junctions that prevent paracellular transport of extracellular fluid and a variety of other substances. However, the expression profile of Claudin-6 (Cldn6) in the developing lung has not been characterized.Methods and results: Cldn6 expression was determined during important periods of lung organogenesis by microarray analysis, qPCR and immunofluorescence. Expression patterns were confirmed to peak at E12.5 and diminish as lung development progressed. Immunofluorescence revealed that Cldn6 was detected in cells that also express TTF-1 and FoxA2, two critical transcriptional regulators of pulmonary branching morphogenesis. Cldn6 was also observed in cells that express Sox2 and Sox9, factors that influence cell differentiation in the proximal and distal lung, respectively. In order to assess transcriptional control of Cldn6, 0.5, 1.0, and 2.0-kb of the proximal murine Cldn6 promoter was ligated into a luciferase reporter and co-transfected with expression vectors for TTF-1 or two of its important transcriptional co-regulators, FoxA2 and Gata-6. In almost every instance, TTF-1, FoxA2, and Gata-6 activated gene transcription in cell lines characteristic of proximal airway epithelium (Beas2B) and distal alveolar epithelium (A-549).
    Respiratory Research 06/2014; 15(1):70. DOI:10.1186/1465-9921-15-70 · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular pathophysiology of lung hypoplasia in congenital diaphragmatic hernia (CDH) remains poorly understood. The Wnt signaling pathway and downstream targets, such as bone morphogenetic proteins (BMP) 4 and other factors such as late gestation lung protein 1 (LGL1), are essential to normal lung development. Nitrofen-induced hypoplastic CDH rodent lungs demonstrate down regulation of the Wnt pathway including BMP4 and reduced LGL1 expression. The aim of the current study was to examine the molecular pathophysiology associated with a surgically induced CDH in an ovine model. Left thoracotomy was performed at 80 days in 14 fetal sheep; CDH was created in seven experimental animals. Lungs were harvested at 136 days (term = 145 days). Lung weight (LW) and mean terminal bronchiole density (MTBD) were measured to determine the degree of pulmonary hypoplasia. Quantitative real time PCR was undertaken to analyze Wnt2, Wnt7b, BMP4, and LGL1 mRNA expression. Total LW was decreased while MTBD was increased in the CDH group (p < 0.05), confirming pulmonary hypoplasia. BMP4 and LGL1 mRNA was significantly reduced in CDH lungs (p < 0.05). Wnt2 mRNA was decreased, although not significantly (p < 0.06). For the first time, down regulation of BMP4 and LGL1 are reported in an ovine CDH model. In contrast to other animal models, these changes are persistent to near term. These findings suggest that mechanical compression from herniated viscera may play a more important role in causing pulmonary hypoplasia in CDH, rather than a primary defect in lung organogenesis.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory disease is the third leading cause of death in the industrialized world. Consequently, the trachea, lungs, and cardiopulmonary vasculature have been the focus of extensive investigations. Recent studies have provided new information about the mechanisms driving lung development and differentiation. However, there is still much to learn about the ability of the adult respiratory system to undergo repair and to replace cells lost in response to injury and disease. This Review highlights the multiple stem/progenitor populations in different regions of the adult lung, the plasticity of their behavior in injury models, and molecular pathways that support homeostasis and repair.
    Cell Stem Cell 08/2014; 15(2):123-138. DOI:10.1016/j.stem.2014.07.012 · 22.15 Impact Factor