Selection Pressure on HIV-1 Envelope by Broadly Neutralizing Antibodies to the Conserved CD4-Binding Site

Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, USA.
Journal of Virology (Impact Factor: 4.44). 03/2012; 86(10):5844-56. DOI: 10.1128/JVI.07139-11
Source: PubMed


The monoclonal antibody (MAb) VRC01 was isolated from a slowly progressing HIV-1-infected donor and was shown to neutralize diverse HIV-1 strains by binding to the conserved CD4 binding site (CD4bs) of gp120. To better understand the virologic factors associated with such antibody development, we characterized HIV-1 envelope (Env) variants from this donor and five other donors who developed broadly neutralizing antibodies. A total of 473 env sequences were obtained by single-genome amplification, and 100 representative env clones were expressed and tested for entry and neutralization sensitivity. While VRC01 neutralizes about 90% of the genetically diverse heterologous HIV-1 strains tested, only selective archival Env variants from the VRC01 donor were sensitive to VRC01 and all of the Env variants derived from the donor plasma were resistant, indicating strong antibody-based selection pressure. Despite their resistance to this broadly reactive MAb that partially mimics CD4, all Env variants required CD4 for entry. Three other CD4bs MAbs from the same donor were able to neutralize some VRC01 escape variants, suggesting that CD4bs antibodies continued to evolve in response to viral escape. We also observed a relatively high percentage of VRC01-resistant Env clones in the plasma of four of five additional broadly neutralizing donors, suggesting the presence of CD4bs-directed neutralizing antibodies in these donors. In total, these data indicate that the CD4bs-directed neutralizing antibodies exert ongoing selection pressure on the conserved CD4bs epitope of HIV-1 Env.


Available from: Richard Wyatt
  • Source
    • "With the advent of improved B cell cloning technologies, several additional CD4BD OD antibodies with broad and potent neutralizing activity have been identified recently. Among the broadest and most potent monoclonal antibodies of this class are VRC01, NIH45-46, and PGV04 (90% of pseudovirus strains tested were neutralized) (Wu et al., 2010; Scheid et al., 2011; Falkowska et al., 2012). The protective efficacy of antibodies to the CD4BD OD in humans has not been tested. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The immunodominant epitopes expressed by the HIV-1 envelope protein gp120 are hypermutable, defeating attempts to develop an effective HIV vaccine. Targeting the structurally conserved gp120 determinant that binds host CD4 receptors (CD4BD) and initiates infection is a more promising route to vaccination, but this has proved difficult because of the conformational flexibility of gp120 and immune evasion mechanisms used by the virus. Mimicking the outer CD4BD conformational epitopes is difficult because of their discontinuous nature. The CD4BD region composed of residues 421-433 (CD4BD(core)) is a linear epitope, but this region possesses B cell superantigenic character. While superantigen epitopes are vulnerable to a small subset of spontaneously produced neutralizing antibodies present in humans without infection (innate antibodies), their non-covalent binding to B cell receptors (BCRs) does not stimulate an effective adaptive response from B cells. Covalent binding at naturally occurring nucleophilic sites of the BCRs by an electrophilic gp120 (E-gp120) analog is a promising solution. E-gp120 induces the synthesis of neutralizing antibodies the CD4BD(core). The highly energetic covalent reaction is hypothesized to convert the abortive superantigens-BCR interaction into a stimulatory signal, and the binding of a spatially distinct epitope at the traditional combining site of the BCRs may furnish a second stimulatory signal. Flexible synthetic peptides can detect pre-existing CD4BD(core)-specific neutralizing antibodies. However, induced-fit conformational transitions of the peptides dictated by the antibody combining site structure may induce the synthesis of non-neutralizing antibodies. Successful vaccine targeting of the CD4BD will require a sufficiently rigid immunogen that mimics the native epitope conformation and bypasses B cell checkpoints restricting synthesis of the neutralizing antibodies.
    Frontiers in Immunology 12/2012; 3:383. DOI:10.3389/fimmu.2012.00383
  • Source
    • "This means that, albeit the presence of cross-clade bNabs that are supposed to target conserved epitope(s), HIV-1 is still able to evolve to bypass this blockade. A similar observation of late continuous evolution and escape was recently reported in a patient who developed bNabs to the CD4-binding site [72]. Secondly, we show that neither a continuous increase of autologous Nabs nor the presence of bNabs seem to allow the control of the patient’s clinical evolution, since a regular increase of virus load and a regular decrease of CD4+ T-cell counts led to the introduction of antiretroviral treatment five years after entry in the cohort. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of HIV-1 and its immune escape to autologous neutralizing antibodies (Nabs) during the acute/early phases of infection have been analyzed in depth in many studies. In contrast, little is known about neither the long-term evolution of the virus in patients who developed broadly Nabs (bNabs) or the mechanism of escape in presence of these bNabs. We have studied the viral population infecting a long term non progressor HIV-1 infected patient who had developed broadly neutralizing antibodies toward all tier 2/3 viruses (6 clades) tested, 9 years after infection, and was then followed up over 7 years. The autologous neutralization titers of the sequential sera toward env variants representative of the viral population significantly increased during the follow-up period. The most resistant pseudotyped virus was identified at the last visit suggesting that it represented a late emerging escape variant. We identified 5 amino acids substitutions that appeared associated with escape to broadly neutralizing antibodies. They were V319I/S, R/K355T, R/W429G, Q460E and G/T463E, in V3, C3 and V5 regions. This study showed that HIV-1 may continue to evolve in presence of both broadly neutralizing antibodies and increasing autologous neutralizing activity more than 10 years post-infection.
    PLoS ONE 08/2012; 7(8):e44163. DOI:10.1371/journal.pone.0044163 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Simian immunodeficiency virus (SIV) infection of rhesus macaques has become an important surrogate model for evaluating HIV vaccine strategies. The extreme resistance to neutralizing antibody (NAb) of many commonly used strains, such as SIVmac251/239 and SIVsmE543-3, limits their potential relevance for evaluating the role of NAb in vaccine protection. In contrast, SIVsmE660 is an uncloned virus that appears to be more sensitive to neutralizing antibody. To evaluate the role of NAb in this model, we generated full-length neutralization-sensitive molecular clones of SIVsmE660 and evaluated two of these by intravenous inoculation of rhesus macaques. All animals became infected and maintained persistent viremia that was accompanied by a decline in memory CD4(+) T cells in blood and bronchoalveolar lavage fluid. High titers of autologous NAb developed by 4 weeks postinoculation but were not associated with control of viremia, and neutralization escape variants were detected concurrently with the generation of NAb. Neutralization escape was associated with substitutions and insertion/deletion polymorphisms in the V1 and V4 domains of envelope. Analysis of representative variants revealed that escape variants also induced NAbs within a few weeks of their appearance in plasma, in a pattern that is reminiscent of the escape of human immunodeficiency virus type 1 (HIV-1) isolates in humans. Although early variants maintained a neutralization-sensitive phenotype, viruses obtained later in infection were significantly less sensitive to neutralization than the parental viruses. These results indicate that NAbs exert selective pressure that drives the evolution of the SIV envelope and that this model will be useful for evaluating the role of NAb in vaccine-mediated protection.
    Journal of Virology 06/2012; 86(16):8835-47. DOI:10.1128/JVI.00923-12 · 4.44 Impact Factor
Show more