Modulation of the Sympatho-Vagal Balance during Sleep: Frequency Domain Study of Heart Rate Variability and Respiration.

Department of Biomedical Engineering, Politecnico di Milano Milano, Italy.
Frontiers in Physiology 01/2012; 3:45. DOI: 10.3389/fphys.2012.00045
Source: PubMed

ABSTRACT Sleep is a complex state characterized by important changes in the autonomic modulation of the cardiovascular activity. Heart rate variability (HRV) greatly changes during different sleep stages, showing a predominant parasympathetic drive to the heart during non-rapid eye movement (NREM) sleep and an increased sympathetic activity during rapid eye movement (REM) sleep. Respiration undergoes important modifications as well, becoming deeper and more regular with deep sleep and shallower and more frequent during REM sleep. The aim of the present study is to assess both autonomic cardiac regulation and cardiopulmonary coupling variations during different sleep stages in healthy subjects, using spectral and cross-spectral analysis of the HRV and respiration signals. Polysomnographic sleep recordings were performed in 11 healthy women and the HRV signal and the respiration signal were obtained. The spectral and cross-spectral parameters of the HRV signal and of the respiration signal were computed at low frequency and at breathing frequency (high frequency, HF) during different sleep stages. Results attested a sympatho-vagal balance shift toward parasympathetic modulation during NREM sleep and toward sympathetic modulation during REM sleep. Spectral analysis of the HRV signal and of the respiration signal indicated a higher respiration regularity during deep sleep, and a higher parasympathetic drive was also confirmed by an increase in the coherence between the HRV and the respiration signal in the HF band during NREM sleep. Our findings about sleep stage-dependent variations in the HRV signal and in the respiratory activity are in line with previous evidences and confirm spectral analysis of the HRV and the respiration signal to be a suitable tool for investigating cardiac autonomic modulation and cardio-respiratory coupling during sleep.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although sleep physiology has been extensively studied, many of the cellular processes that occur during sleep and the functional significance of sleep remain unclear. The degree of cardiorespiratory synchronization during sleep increases during the progression of slow-wave sleep (SWS). Autonomic nervous system (ANS) activity also assumes a pattern that correlates with the progression of sleep. The ANS is an integral part of physiologic processes that occur during sleep with the respective contribution of parasympathetic and sympathetic activity varying between different sleep stages. In our paper, we attempt to unify the activities of various physiologic systems, namely the cardiac, respiratory, ANS and brain, during sleep into a consolidated picture with particular attention to the membrane potential of neurons. In our unified model, we explore the potential of sleep to promote restorative processes in the brain.
    Sleep Medicine 01/2014; · 3.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Circadian rhythms influence many biological systems, but there is limited information about circadian and diurnal variation in sleep related breathing disorder. We examined circadian and diurnal patterns in sleep apnea and ventilatory patterns in two rat strains, one with high sleep apnea propensity (Brown Norway [BN]) and the other with low sleep apnea propensity (Zucker Lean [ZL]).
    Sleep 01/2014; 37(4):715-721. · 5.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is associated with increased cardiac risk of morbidly and mortality and for the development and progression of obstructive sleep apnea (OSA). Severity of obesity negatively affects the heart rate variability (HRV) in patients with indication for bariatric surgery (BS). The purpose of this study is to determine if the severity of obesity alters the autonomic cardiac regulation and the cardio-respiratory coupling during sleep using spectral analysis of HRV and respiration variability signals (RS) in patients prior to BS. Twenty-nine consecutive preoperative BS and ten subjects (controls) underwent polysomnography. The spectral and cross-spectral parameters of the HRV and RS were computed during different sleep stages (SS). Spectral analysis of the HRV and RV indicated lower respiration regularity during sleep and a lower HRV in obese patients (OP) during all SS when compared with controls (p < 0.05). Severely (SO) and super-obese patients (SOP) presented lower values of low frequency/high frequency (LF/HF) ratio and LF power during REM sleep and higher HF power (p < 0.05), while morbidly obese (MO) patients presented lower LF/HF ratio and LF power in SS-S2 and higher HF power when compared to controls (p < 0.05). The cross-spectral parameters showed that SOP presented lower percentage of tachogram power coherent with respiration in SS-S3 when compared to controls (p < 0.05). Patients prior to BS presented altered HRV and RV in all SS. SO, MO, and SOP presented altered cardio-respiratory coupling during sleep, and these alterations are related with severity of obesity and OSA parameters.
    Obesity Surgery 01/2014; · 3.74 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014