Future treatments for Parkinson's disease: surfing the PD pipeline.

Department of Neurology, College of Medicine, University of South Florida, Tampa, Florida 33606, USA.
The International journal of neuroscience (Impact Factor: 1.53). 09/2011; 121 Suppl 2(S2):53-62. DOI: 10.3109/00207454.2011.620195
Source: PubMed

ABSTRACT Our current wish list for the treatment of Parkinson's disease (PD) includes therapies that will provide robust and sustained antiparkinsonian benefit through the day, ameliorate or prevent dyskinesia, and slow or prevent the progression of the disease. In this article, I review selected new therapies in clinical development for motor features or treatment complications of PD, and some that may slow disease progression. These include adenosine 2a (A2a) antagonists (istradefylline, preladenant, and SYN115), levodopa/carbidopa intestinal gel (LCIG), IPX066--an extended-release formulation of carbidopa/levodopa, XP21279--a sustained-release levodopa prodrug, ND0611--a carbidopa subcutaneous patch, safinamide--a mixed mechanism of action medication that may provide both MAO-B and glutamate inhibition, PMY50028--an oral neurotrophic factor inducer, antidyskinesia medications (AFQ056 and fipamezole), and gene therapies (AAV2-neurturin and glutamic acid decarboxylase gene transfer). Some of these therapies will never be proven efficacious and will not come to market while others may play a key role in the future treatment of PD.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Levodopa remains the most potent drug to treat motor symptoms in Parkinson's disease (PD); however, motor fluctuations and levodopa-induced dyskinesia that occur with long-term use restrict some of its therapeutic value. Despite these limitations, the medical treatment of PD strives for continuous relief of symptoms using different strategies throughout the course of the illness: increasing the half-life of levodopa, using 'levodopa-sparing agents' and adding non-dopaminergic drugs. New options to 'improve' delivery of levodopa are under investigation, including long-acting levodopa, nasal inhalation and continuous subcutaneous or intrajejunal administration of levodopa. Long-acting dopamine agonists were recently developed and are undergoing further comparative studies to investigate potential superiority over the immediate-release formulations. Non-dopaminergic drugs acting on adenosine receptors, cholinergic, adrenergic, serotoninergic and glutamatergic pathways are newly developed and many are being evaluated in Phase II and Phase III trials. This article focuses on promising novel therapeutic approaches for the management of PD motor symptoms and motor complications. We will provide an update since 2011 on new formulations of current drugs, new drugs with promising results in Phase II and Phase III clinical trials, old drugs with new possibilities and some new potential strategies that are currently in Phase I and II of development (study start date may precede 2011 but are included as study is still ongoing or full data have not yet been published). Negative Phase II and Phase III clinical trials published since 2011 will also be briefly mentioned.
    Expert Review of Clinical Pharmacology 11/2014; 7(6):761-77. DOI:10.1586/17512433.2014.966812
  • Source
    Medicinal Chemistry 03/2015; · 1.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD. © 2015 Wiley Periodicals, Inc.
    Medicinal Research Reviews 03/2015; DOI:10.1002/med.21344 · 8.13 Impact Factor