Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway.

Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
PLoS Biology (Impact Factor: 11.77). 03/2012; 10(3):e1001281. DOI: 10.1371/journal.pbio.1001281
Source: PubMed

ABSTRACT In eukaryotes, the classical form of programmed cell death (PCD) is apoptosis, which has as its specific characteristics DNA fragmentation and membrane depolarization. In Escherichia coli a different PCD system has been reported. It is mediated by the toxin-antitoxin system module mazEF. The E. coli mazEF module is one of the most thoroughly studied toxin-antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. mazEF-mediated cell death is a population phenomenon requiring the quorum-sensing pentapeptide NNWNN designated Extracellular Death Factor (EDF). mazEF is triggered by several stressful conditions, including severe damage to the DNA. Here, using confocal microscopy and FACS analysis, we show that under conditions of severe DNA damage, the triggered mazEF-mediated cell death pathway leads to the inhibition of a second cell death pathway. The latter is an apoptotic-like death (ALD); ALD is mediated by recA and lexA. The mazEF-mediated pathway reduces recA mRNA levels. Based on these results, we offer a molecular model for the maintenance of an altruistic characteristic in cell populations. In our model, the ALD pathway is inhibited by the altruistic EDF-mazEF-mediated death pathway.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Escherichia coli (E. coli) SOS response is the largest, most complex, and best characterized bacterial network induced by DNA damage. It is controlled by a complex network involving the RecA and LexA proteins. We have previously shown that the SOS response to DNA damage is inhibited by various elements involved in the expression of the E. coli toxin-antitoxin mazEF pathway. Since the mazEF module is present on the chromosomes of most E. coli strains, here we asked: Why is the SOS response found in so many E. coli strains? Is the mazEF module present but inactive in those strains? We examined three E. coli strains used for studies of the SOS response, strains AB1932, BW25113, and MG1655. We found that each of these strains is either missing or inhibiting one of several elements involved in the expression of the mazEF-mediated death pathway. Thus, the SOS response only takes place in E. coli cells in which one or more elements of the E. coli toxin-antitoxin module mazEF or its downstream pathway is not functioning.
    PLoS ONE 12/2014; 9(12):e114380. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among the great number of addictive modules which have been discovered, only a few have been characterized. However, research concerning the adoption of toxins from these systems shows their great potential as a tool for molecular biology and medicine. In our study, we tested two different toxins derived from class II addictive modules, pasAB from plasmid pTF-FC2 (Thiobacillus ferrooxidans) and vapBC 2829Rv (Mycobacterium tuberculosis), in terms of their usefulness as growth inhibitors of human cancer cell lines, namely KYSE 30, MCF-7 and HCT 116. Transfection of the pasB and vapC genes into the cells was conducted with the use of two different expression systems. Cellular effects, such as apoptosis, necrosis and changes in the cell cycle, were tested by applying flow cytometry with immunofluorescence staining. Our findings demonstrated that toxins VapC and PasB demonstrate proapoptotic activity in the human cancer cells, regardless of the expression system used. As for the toxin PasB, observed changes were more subtle than for the VapC. The level of expression for both the genes was monitored by QPCR and did not reveal statistically significant differences within the same cell line.
    Toxins 10/2014; 6(10):2948-61. · 2.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study reports a comparative and mechanistic genotoxicity assessment of four engineered nanomaterials (ENMs) across three species, including E. coli, yeast, and human cells, with the aim to reveal the distinct potential genotoxicity mechanisms among the different nanomaterials and their association with physiochemical features. Both the conventional phenotypic alkaline comet test and the newly developed quantitative toxicogenomics assay, that detects and quantifies molecular level changes in the regulation of six DNA damage repair pathways, were employed. The proposed molecular endpoints derived from the toxicogenomics assays, namely TELI (Transcriptional Effect Level Index) and PELI (Protein Effect Level Index), correlated well with the phenotypic DNA damage endpoints from comet tests, suggesting that the molecular genotoxicity assay is suitable for genotoxicity detection. Temporal altered gene or protein expression profiles revealed various potential DNA damage types and relevant genotoxic mechanisms induced by the tested ENMs. nTiO2_a induced a wide spectrum of DNA damage consistently across three species. Three carbon-based ENMs, namely carbon black, single wall carbon nanotube (SWCNT) and fullerene, exhibited distinct, species and ENM property-dependent DNA damage mechanisms. All carbon based ENMs induced relatively weak DNA damage repair response in E. coli, but more severe DNA double strand break in eukaryotes. The differences in cellular structure and defense systems among prokaryotic and eukaryotic species lead to distinct susceptibility and mechanisms for ENM uptake and, thus, varying DNA damages and repair responses. The observation suggested that eukaryotes, especially mammalian cells, are likely more susceptible to genotoxicity than prokaryotes in the ecosystem when exposed to these ENMs.
    Environmental Science and Technology 10/2014; · 5.48 Impact Factor

Full-text (3 Sources)

Available from
Oct 28, 2014