Role of γδ T cells in α-galactosylceramide-mediated immunity.

Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia.
The Journal of Immunology (Impact Factor: 5.52). 03/2012; 188(8):3928-39. DOI: 10.4049/jimmunol.1103582
Source: PubMed

ABSTRACT Attempts to harness mouse type I NKT cells in different therapeutic settings including cancer, infection, and autoimmunity have proven fruitful using the CD1d-binding glycolipid α-galactosylceramide (α-GalCer). In these different models, the effects of α-GalCer mainly relied on the establishment of a type I NKT cell-dependent immune cascade involving dendritic cell, NK cell, B cell, or conventional CD4(+) and CD8(+) T cell activation/regulation as well as immunomodulatory cytokine production. In this study, we showed that γδ T cells, another population of innate-like T lymphocytes, displayed a phenotype of activated cells (cytokine production and cytotoxic properties) and were required to achieve an optimal α-GalCer-induced immune response. Using gene-targeted mice and recombinant cytokines, a critical need for IL-12 and IL-18 has been shown in the α-GalCer-induced IFN-γ production by γδ T cells. Moreover, this cytokine production occurred downstream of type I NKT cell response, suggesting their bystander effect on γδ T cells. In line with this, γδ T cells failed to directly recognize the CD1d/α-GalCer complex. We also provided evidence that γδ T cells increase their cytotoxic properties after α-GalCer injection, resulting in an increase in killing of tumor cell targets. Moreover, using cancer models, we demonstrated that γδ T cells were required for an optimal α-GalCer-mediated anti-tumor activity. Finally, we reported that immunization of wild-type mice with α-GalCer enhanced the adaptive immune response elicited by OVA, and this effect was strongly mediated by γδ T cells. We conclude that γδ T cells amplify the innate and acquired response to α-GalCer, with possibly important outcomes for the therapeutic effects of this compound.

  • [Show abstract] [Hide abstract]
    ABSTRACT: NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here, we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4(+)CD25(+)Foxp3(+) regulatory T cells.
    Cancer Immunology and Immunotherapy 01/2014; · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phytosphingosine is abundant in plants and fungi and is found in mammalian epidermis, including the stratum corneum. Phytosphingosine and its derivatives N-acetyl phytosphingosine and tetraacetyl phytosphingosine are part of the natural defense system of the body. However, these molecules exhibit strong toxicities at high concentrations. We synthesized phytosphingosine derivatives, (Z)-4-oxo-4-(((2S,3S,4R)-1,3,4-trihydroxyoctadecan-2-yl)amino)but-2-enoic acid (mYG-II-6) and (E)-4-oxo-4-(((2S,3S,4R)-1,3,4-trihydroxyoctadecan-2-yl)amino)but-2-enoic acid (fYG-II-6), to increase efficacy and decrease toxicity, and the biological activities of the derivatives in the inflammatory response were examined. Both YG-II-6 compounds effectively suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammatory skin damage and inflammatory response in a mouse model. In addition, topical application of fYG-II-6 suppressed ear swelling and psoriasiform dermatitis in the ears of interleukin-23-injected mice. Anti-inflammatory and anti-psoriatic activities of the phytosphingosine derivatives inhibited nuclear factor-kappa B (NF-κB), janus kinase/signal transducer and activator of transcription (JAK/STAT), and mitogen-activated protein kinases (MAPKs) signaling. Finally, the YG-II-6 compounds induced programmed cell death in keratinocytes and mouse skin and were less toxic than phytosphingosine. Our study demonstrated that the phytosphingosine-derived YG-II-6 compounds have much stronger biological potencies than the lead compounds. The YG-II-6 compounds ameliorated inflammatory skin damage. Thus, YG-II-6 compounds are potential topical agents for treating chronic inflammatory skin diseases, such as psoriasis.Journal of Investigative Dermatology accepted article preview online, 31 October 2013; doi:10.1038/jid.2013.453.
    Journal of Investigative Dermatology 10/2013; · 6.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The NLRP3 inflammasome plays a crucial role in the innate immune response to pathogens and exogenous or endogenous danger signals. Its activity must be precisely and tightly regulated to generate tailored immune responses. However, the immune cell subsets and cytokines controlling NLRP3 inflammasome activity are still poorly understood. Here, we have shown a link between NKT-cell-mediated TNF-α and NLRP3 inflammasome activity. The NLRP3 inflammasome in antigen-presenting cells was critical to potentiate NKT-cell-mediated immune responses, since C57BL/6 NLRP3 inflammasome-deficient mice exhibited reduced responsiveness to α-GalCer. Importantly, NKT cells were found to act as regulators of NLRP3 inflammasome signaling, as NKT-cell-derived TNF-α was required for optimal IL-1β and IL-18 production by myeloid cells in response to α-GalCer, by acting on the NLRP3 inflammasome-priming step. Thus, NKT cells play a role in the positive regulation of NLRP3 inflammasome priming by mediating the production of TNF-α, thus demonstrating another means by which NKT cells control early inflammation.This article is protected by copyright. All rights reserved
    European Journal of Immunology 03/2014; · 4.97 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014